登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』Equalization Control for Lithium-Ion Batteries(锂离子电池均衡控制)

書城自編碼: 4009418
分類:簡體書→大陸圖書→工業技術一般工业技术
作者: 陈剑,欧阳权,王志胜
國際書號(ISBN): 9787577209418
出版社: 华中科技大学出版社
出版日期: 2024-07-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:HK$ 181.7

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
周易
《 周易 》

售價:HK$ 44.6
东南亚的传统与发展
《 东南亚的传统与发展 》

售價:HK$ 67.2
乾隆制造
《 乾隆制造 》

售價:HK$ 87.4
资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册)
《 资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册) 》

售價:HK$ 304.4
明代社会变迁时期生活质量研究
《 明代社会变迁时期生活质量研究 》

售價:HK$ 316.2
律令国家与隋唐文明
《 律令国家与隋唐文明 》

售價:HK$ 76.7
现代吴语的研究(中华现代学术名著3)
《 现代吴语的研究(中华现代学术名著3) 》

售價:HK$ 65.0
天下的当代性:世界秩序的实践与想象(新版)
《 天下的当代性:世界秩序的实践与想象(新版) 》

售價:HK$ 77.3

 

建議一齊購買:

+

HK$ 97.8
《非饱和膨胀土的水分迁移特性研究》
+

HK$ 112.7
《电动汽车充电网——技术、产品、平台及运营》
+

HK$ 97.5
《房树人绘画投射测验——临床应用实践手册》
+

HK$ 95.9
《轻松看懂电气控制线路及实物接线图》
+

HK$ 115.0
《集成电路设计——仿真、版图、综合、验证及实践》
+

HK$ 76.6
《零基础学家电维修速成一本通》
編輯推薦:
《节能与新能源汽车关键技术研究丛书》聚焦国家节能减排和发展战略性新兴产业的需求,瞄准国际前沿科技,服务汽车产业转型升级和国家经济建设。丛书由清华大学欧阳明高院士担任主编;作者由包含国家杰青、国家特聘专家在内的国内外一流学者亲自领衔执笔,他们是国内外新能源汽车研究领域最高水平的代表,具有较高的权威性。著作内容为作者承担国家重点研究项目成果的结晶,原创性强、学术水平高、体现自主知识产权。具有较高的学术价值、出版价值和产业应用价值。
內容簡介:
锂离子电池是市场上使用最广泛的电池。其主要用途包括动力电池和储能电池。在实际应用中,通常会串联足够多的电池以满足高电压需求,但电池组中的每个电池都不同,这会影响整个电池组的性能和寿命。如今,为了避免电池组中的不一致性,将采用电池均衡方法。电池均衡通常有两种方法,包括保持电池之间的充电状态一致和使电池之间的电压相等。同时,均衡控制策略还包括主动小区均衡和被动小区均衡。与消耗能量的被动均衡策略相比,主动电池均衡方法在电池之间传递能量,效率更高,均衡时间更短。此外,由于主动细胞平衡策略的优势,它们吸引了大量的研究和商业兴趣。因此,主动均衡控制策略的设计对锂离子电池组的安全和健康具有重要意义。现在,根据拓扑结构,所设计的均衡控制算法可以分为三类:1)单元间均衡,2)基于模块的单元均衡和3)基于电池组的充电均衡。
關於作者:
陈剑,浙江大学机械工程学院教授、博导,*人才(青年),中国自动化学会控制理论专委会委员、TCCT新能源控制学组主任、车辆控制与智能化专委会委员、智慧教育专委会委员等。研究方向包括计算机视觉、机器人感知与控制,智能驾驶,氢电混合动力、燃料电池控制,非线性控制等。在机器人视觉伺服控制、非线性控制以及燃料电池系统建模与控制等领域取得了一些研究成果,合作发表了140余篇SCI/EI论文。
目錄
Contents 1 Introduction .................................................. 1 1.1 Applications of Lithium-Ion Batteries . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 The Crucial Role of Batteries . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Comparisons of Different Batteries . . . . . . . . . . . . . . . . . . 4 1.2 Battery Inconsistency Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Crucial Role of Cell Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Voltage-Based Equalization . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 SOC-Based Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Overview of Cell Equalization Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Classification and Comparisons of Cell Equalization Systems . . . 13 2.1.1 Passive Cell Equalization Systems . . . . . . . . . . . . . . . . . . . 13 2.1.2 Active Cell Equalization Systems . . . . . . . . . . . . . . . . . . . 15 2.1.3 Comparisons of Cell Equalization Systems . . . . . . . . . . . 16 2.2 Commercial Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Bidirectional Buck-Boost Converters . . . . . . . . . . . . . . . . 17 2.2.2 Bidirectional Modified C?uk Converters . . . . . . . . . . . . . . 19 2.3 Overview of Equalization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Cell-to-Cell Equalization Algorithms . . . . . . . . . . . . . . . . 21 2.3.2 Cell-to-Pack-to-Cell Equalization Algorithms . . . . . . . . . 23 2.3.3 Charging Equalization Algorithms . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Active Cell Equalization Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Commonly Used Active Cell Equalization Topology . . . . . . . . . . 29 3.1.1 Adjacent-Based Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2 Non-adjacent-Based Topology . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Direct Cell-Cell Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 Mixed Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Active Cell Equalization Topology Comparison . . . . . . . . . . . . . . . 41 3.2.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Economic Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Optimal Active Cell Equalizing Topology Design . . . . . . . . . . . . . . . . . 55 4.1 Cell Equalizing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.2 Consensus-Based Cell Equalizing Algorithm Design . . . 57 4.2 Design of the Optimal Equalizing Topology . . . . . . . . . . . . . . . . . . 59 4.2.1 Equalizing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 Traditional Cell Equalizing Topology . . . . . . . . . . . . . . . . 61 4.2.3 Position Identification of the Added ICEs for Reducing the Equalizing Time . . . . . . . . . . . . . . . . . . . 62 4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Neural Network-Based SOC Observer Design for Batteries . . . . . . . 73 5.1 Battery Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 RBF Neural Network Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Neural Network Based Nonlinear Observer Design . . . . 75 5.2.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Experiments and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.1 Experiment for Parameter Extraction . . . . . . . . . . . . . . . . 79 5.3.2 Experiment for SOC Estimation . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Active Cell-to-Cell Equalization Control . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1 Cell Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1 Battery Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.2 Bidirectional Modified C?uk Converter Model . . . . . . . . . 92 6.1.3 Cell Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Objective and Constraints of the Cell Equalizing Process . . . . . . . 95 6.2.1 Cell Equalizing Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2.2 Cell Equalizing Constraints . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3 SOC Estimation Based Quasi-Sliding Mode Control for Cell Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.1 Adaptive Quasi-sliding Mode Observer Design for Cells’ SOC Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.2 Quasi-Sliding Mode-Based Cell Equalizing Control . . . 99 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 Module-Based Cell-to-Cell Equalization Control . . . . . . . . . . . . . . . . . 109 7.1 Module-Based Cell-to-Cell Equalization Systems . . . . . . . . . . . . . 109 7.1.1 Equalizing Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1.2 Cell Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . 112 7.1.3 Cell Equalizing Constraints . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 Hierarchical Optimal Control Strategy . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.1 Cell Equalizing Task Formulation . . . . . . . . . . . . . . . . . . . 115 7.2.2 Top Layer: Module-Level Equalizing Control . . . . . . . . . 116 7.2.3 Bottom Layer: Cell-Level Equalizing Control . . . . . . . . . 118 7.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.1 Cell Equalizing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3.2 Tests of Different Weight Selections . . . . . . . . . . . . . . . . . 121 7.3.3 Comparison With Decentralized Equalizing Control . . . 123 7.3.4 Tests for Different Cells’ Initial SOCs . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8 Module-Based Cell-to-Pack Equalization Control . . . . . . . . . . . . . . . . 127 8.1 Improved Module-Based CPC Equalization System . . . . . . . . . . . 127 8.1.1 Equalizing Current Formulation . . . . . . . . . . . . . . . . . . . . . 128 8.1.2 Improved Module-Based CPC Equalization System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.2 Two-Layer Model Predictive Control Strategy . . . . . . . . . . . . . . . . 132 8.2.1 Cost Function Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.2.3 Centralized MPC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.3 Two-Layer MPC for Cell Equalization . . . . . . . . . . . . . . . . . . . . . . 134 8.3.1 Top-layer MPC: ML Equalizing Current Control . . . . . . 135 8.3.2 Bottom-Layer MPC: CMC Equalizing Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.3.3 Computational Complexity Comparison With Centralized MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.4.1 Equalization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.4.2 Comparison With the Centralized MPC . . . . . . . . . . . . . . 140 8.4.3 Comparison With a Commercial CPC-Based Equalization Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.4.4 Tests of Different Cells’ Initial SOC Vectors . . . . . . . . . . 142 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9 Optimal Hierarchical Charging Equalization for Battery Packs . . . . 147 9.1 Charging System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.1.1 Battery Pack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.1.2 Multi-module Charger Modeling . . . . . . . . . . . . . . . . . . . . 148 9.1.3 Charging System Modeling . . . . . . . . . . . . . . . . . . . . . . . . 149 9.2 Hierarchical Control for the Charging Equalization System . . . . . 150 9.2.1 Charging Equalization Objectives . . . . . . . . . . . . . . . . . . . 1519.2.2 Charging Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2.3 Top-Layer Control: Optimal Charging Current Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2.4 Bottom-Layer Control: Charging Current Tracking . . . . 156 9.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 158 9.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 10 Simultaneous Charging Equalization Strategy for Battery Packs . . . 167 10.1 Charging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.1.1 Battery Pack Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.1.2 Charging Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 10.1.3 Charging Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.2 Simultaneous Charging Development . . . . . . . . . . . . . . . . . . . . . . . 171 10.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 175 10.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
內容試閱
Preface Lithium-ion battery is the most widely used battery in the market. Its main purpose include power battery and energy storage battery. In practical applications, enough cells are usually connected in series to meet the high voltage demand and connected in parallel to meet the high capacity, but each cell in the battery pack is different, which will affect the performance and life of the whole battery pack. Nowadays, in order to avoid inconsistence in the battery pack, different battery-equalization methods are put forward. There are usually two methods of battery equalization, including keeping the state of charge between cells consistent and making the voltage between cells equal. At the same time, the equalization control strategy also includes active cell equalization and passive cell equalization. Compared with the passive equalizing strategies that dissipate energy, active cell equalization method transfers the energy between the cells, which is more efficient and requires shorter equalization time. Because of the advantages of active cell equalization strategies, it has attracted great interest from academia and industries. In addition, this book introduces the state-of-the-art active cell equalization control strategy for lithium-ion battery packs from the fundamental theories to practical designs. In particular, for different equalization topologies, different equalization control algorithms are used to realize the equalization of each cell in the battery pack. Of course, the same equalization topology can also adopt different equalization control algorithms to realize the equalization of each cell of the battery pack. In addition, charge equalization will also keep the SOC of all cells of the battery pack consistent. This paper mainly includes the following three parts: ? The first part (Chaps. 1–4) first explains that the key role of cell balance is to prolong the service life of battery pack and improve the performance of battery pack; next the battery-equalization system is summarized: the advantages and disadvantages of active equalization system and passive equalization system are compared, and the advantages of active equalization are emphasized, then some new equalizing algorithms of active equalization are introduced. Thirdly, several advanced active cell equalization topology models are introduced. Here, the activeequalization topology includes cell-to-cell, cell-to-pack, module-based and layerbased. At the same time, we perform an economic and performance comparison of the above topologies; finally, according to graph theory, we design the optimal active cell equalizing topology. ? The second part (Chaps. 5–8) designs a neural network-based observer and introduces the three equalization control algorithms based on part of the above topology. For cell-to-cell equalization topology, we first introduce a quasi-sliding mode observer to estimate the SOC value of each cell in the battery pack, then we introduce quasi-sliding mode control-based equalization strategy to realize cell-to-cell equalization, and use hierarchical control to achieve the balance of module-based cell-to-cell topology model. In hierarchical control algorithm, the top layer is the module-level equalizing control, and the bottom layer computes the controlled cell-level equalizing currents for different battery modules in parallel; besides, for cell-to-pack-to-cell equalization control, we divide the battery pack into several modules and introduce an improved module-based CPC equalization, based on the developed model, a two-layer MPC strategy is proposed, where the top-layer MPC controls the ML equalizers and the bottom-layer MPC designs the controlled CMC equalizing currents in each module. ? The third part (Chaps. 9 and 10) designs the two equalization control algorithms based on multi-module charger. For charging strategy of battery pack, the aim is to design a charger so that the SOCs of battery pack converge to the same value. That is, the batteries’ SOCs converge to the same desired value in the charging mode. In this part, firstly, we utilize IDA-PBC as bottom-layer controller to make the actual charging currents track their desired values designed by the top layer; secondly, we design a quadratic programming-based simultaneous charging strategy for battery packs, which realize the simultaneous equalization of different battery packs. Hangzhou, China November 2022 Jian Chen Quan Ouyang Zhisheng Wang

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.