《Spectroscopy and Spectral Technique(光谱学与光谱技术)》*先系统介绍了光谱学的基础概念,包括其起源与发展、原子和分子光谱。接着,详细探讨了11种典型的光谱技术,如激光诱导击穿光谱、拉曼光谱、红外光谱等,包括其原理、实验系统及前沿应用。随后,阐述了如何在材料、环境和工业生产等领域中结合应用多种光谱技术,以及其与单一技术相比的优势。《Spectroscopy and Spectral Technique(光谱学与光谱技术)》还*特地介绍了基于机器学习的人工智能与光谱技术的结合应用。作为一大特色,结合最新科研成果,《Spectroscopy and Spectral Technique(光谱学与光谱技术)》系统设计了多项光谱仿真实验项目。*后,《Spectroscopy and Spectral Technique(光谱学与光谱技术)》展望了光谱学与光谱技术未来的发展趋势。
目錄:
Contents
Chapter 1 Overview of Spectral Techniques 1
1.1 The Origin of Spectral Techniques 1
1.1.1 Spectrum and Spectroscopy 1
1.1.2 The History of Spectral Techniques 1
1.2 The Development of Spectroscopy Instruments 3
1.2.1 The Development of Spectroscopic Theory 3
1.2.2 The Advent of the Laser 4
1.2.3 Development of Spectrometers 5
1.3 Atomic Energy Levels and Atomic Spectrum 5
1.3.1 Atomic Energy Level 5
1.3.2 Atomic Emission Spectroscopy 6
1.3.3 Atomic Absorption Spectrum 8
1.4 Molecular Spectrum 9
1.4.1 Molecular Vibrational Energy Levels and Corresponding Spectral Techniques 10
1.4.2 Molecular Electrons Moving Energy Levels and Corresponding Spectral Techniques 11
References 12
Chapter 2 Laser-induced Breakdown Spectroscopy 15
2.1 Birth and Development of LIBS 15
2.2 Fundamentals of LIBS 17
2.2.1 Laser-induced Plasma 17
2.2.2 Local Thermodynamic Equilibrium 18
2.2.3 Plasma Temperature and Electron Number Density 19
2.2.4 Qualitative and Quantitative Analysis 20
2.3 Instrumentation for LIBS 21
2.3.1 LIBS Experimental Setup 21
2.3.2 Online/In Situ LIBS Instruments 22
2.3.3 Signal Enhancement for LIBS 23
2.4 LIBS Applications 25
2.4.1 Environmental Monitoring 25
2.4.2 Coal Analysis 27
2.4.3 Biomedicine 29
2.4.4 Agriculture and Food Safety 31
2.4.5 Space Exploration 32
2.4.6 Ocean Exploration 34
References 35
Chapter 3 Raman Spectroscopy Technology 41
3.1 Birth and Development of Raman Spectroscopy 41
3.1.1 The Great Founder 41
3.1.2 The Birth of Raman Spectroscopy Technology 41
3.1.3 The Development of Raman Spectroscopy Technology 42
3.2 Principle of Inelastic Scattering 42
3.2.1 Nonconservation of the Kinetic Energy of Particles 42
3.2.2 Elastic and Inelastic Scattering 43
3.2.3 Raman Scattering and Rayleigh Scattering 43
3.2.4 Stokes and Anti-Stokes Lines 46
3.3 Experimental Systems for Raman Spectroscopy 50
3.3.1 The Source and Splitting of the Light 50
3.3.2 Collection and Monitoring 53
3.4 Surface-Enhanced Raman Spectroscopy 54
3.4.1 Defects of Ordinary Raman Spectroscopy 54
3.4.2 Principles of Surface-Enhanced Raman Spectroscopy 55
3.5 Important Applications of Raman Spectroscopy 56
3.5.1 Spectral Fingerprint 56
3.5.2 Real-time Detection of Liquid Phase Raman Spectroscopy Experiment 59
3.5.3 Configuration Analysis of Raman 62
References 64
Chapter 4 Differential Optical Absorption Spectroscopy 68
4.1 Development of DOAS 68
4.1.1 Development of DO AS Abroad 68
4.1.2 Domestic DOAS Development 69
4.1.3 Opportunities and Challenges 70
4.2 Principle of DOAS 71
4.2.1 Lambert-Beer,s Law 71
4.2.2 Advantages of DOAS 72
4.3 Experimental System of DOAS 73
4.3.1 Active DOAS System 73
4.3.2 Passive DOAS System (MAX-DOAS) 74
4.4 DOAS for Multi-platform 75
4.4.1 D OAS for the Ground Platform 75
4.4.2 DOAS for Mobile Platforms 76
4.4.3 Multi-platform Joint Application 77
4.5 Important Applications of DOAS 77
4.5.1 The Global Ozone Monitoring Experiment (GOME) 77
4.5.2 Gaofen-5 Satellite and Atmospheric Pollution Component Inversion Method 78
4.5.3 Determination of Plume from the Pollution Source 78
4.5.4 Planar Array Measurements of Volcanic Plumes 79
4.5.5 Comprehensive Stereoscopic Observation Network 80
References 81
Chapter 5 Infrared Spectroscopy 86
5.1 Background Introduction of Infrared Spectroscopy 86
5.1.1 Infrared Radiation 86
5.1.2 IR Region 87
5.1.3 Development of IR Spectroscopy 87
5.2 Principle of IR Spectroscopy 87
5.2.1 Principle and Characteristics of IR Spectroscopy 87
5.2.2 Infrared Spectrometer 88
5.3 Fourier Transform Infrared Spectroscopy 89
5.3.1 Introduction to FTIR 89
5.3.2 Principle of FTIR Spectroscopy 89
5.4 Application of IR Spectroscopy 90
5.4.1 IR Spectroscopy and Environmental Monitoring 90
5.4.2 IR Spectroscopy and Food Detection 93
5.4.3 IR Spectroscopy and Microbiological Analyses 95
5.4.4 IR Spectroscopy and Agriculture 97
5.4.5 IR Spectroscopy and Forensic Analysis 100
References 104
Chapter 6 Laser-induced Fluorescence Spectroscopy 107
6.1 Introduction to Fluorescence Spectroscopy 107
6.1.1 The History of Fluorescence Spectroscopy 107
6.1.2 Characteristics of Fluorescence Spectroscopy 108
6.1.3 Traditional Fluorescence Spectroscopy and Laser-induced Fluorescence Spectroscopy 110
6.2 The Technical Basis of Laser-induced Fluorescence 111
6.2.1 The Principle of Laser-induced Fluorescence 111
6.2.2 Affected Factors of Fluorescence 113
6.2.3 The Development of LIF Technology 114
6.3 Experimental System of LIF Spectroscopy 115
6.3.1 Excitation Light Sources 115
6.3.2 Detector 116
6.4 Important Applications of LIF 117
6.4.1 On-line Detection of Carbon Isotopes Based on LIF Spectroscopy of CN Radicals 117
6.4.2 Applications of LIF in Soils and Sediments 12