新書推薦:
《
新经济史革命:计量学派与新制度学派
》
售價:HK$
89.7
《
盗墓笔记之秦岭神树4
》
售價:HK$
57.3
《
战胜人格障碍
》
售價:HK$
66.7
《
逃不开的科技创新战争
》
售價:HK$
103.3
《
漫画三国一百年
》
售價:HK$
55.2
《
希腊文明3000年(古希腊的科学精神,成就了现代科学之源)
》
售價:HK$
82.8
《
粤行丛录(岭南史料笔记丛刊)
》
售價:HK$
80.2
《
岁月待人归:徐悲鸿自述人生艺术
》
售價:HK$
59.8
|
內容簡介: |
塞潘斯基编著的《紧李群(影印版)》是“国外数学名著系列”之一,内容包括紧李群、群表示论、调和分析、李代数、阿贝尔李子群等。可供高等院校数学专业研究生、数学类科研人员学习参考。
|
目錄:
|
Preface
1 Compact Lie Groups
1.1 Basic Notions
1.1.1 Manifolds
1.1.2 Lie Groups
1.1.3 Lie Subgroups and Homomorphisms
1.1.4 Compact Classical Lie Groups
1.1.5 Exercises
1.2 Basic Topology
1.2.1 Connectedness
1.2.2 Simply Connected Cover
1.2.3 Exercises
1.3 The Double Cover of SOn
1.3.1 Clifford Algebras
1.3.2 SpinnIR and Pin
1.3.3 Exercises
1.4 Integration
1.4.1 Volume Forms
1.4.2 Invafiant Integration
1.4.3 Fubini''s Theorem
1.4.4 Exercises
2 Representations
2.1 Basic Notions
2.1.1 Definitions
2.1.2 Examples
2.1.3 Exercises
2.2 Operations on Representations
2.2.1 Constructing New Representations
2.2.2 Irreducibility and Schur''s Lemma
2.2.3 Unitarity
2.2.4 Canonical Decomposition
2.2.5 Exercises
2.3 Examples of Irreducibility
2.3.1 SU2 and VnC2
2.3.2 SOn and Harmonic Polynomials
2.3.3 Spin and Half-Spin Representations
2.3.4 Exercises
3 Harmonic Analysis
3.1 Matrix Coefficients
3.1.1 Schur Orthogonality
3.1.2 Characters
3.1.3 Exercises
3.2 Infinite-Dimensional Representations
3.2.1 Basic Definitions and Schur''s Lemma
3.2.2 G-Finite Vectors
3.2.3 Canonical Decomposition
3.2.4 Exercises
3.3 The Peter-Weyl Theorem
3.3.1 The Left and Right Regular Representation
3.3.2 Main Result
3.3.3 Applications
3.3.4 Exercises
3.4 Fourier Theory
3.4.1 Convolution
3.4.2 Plancherel Theorem
3.4.3 Projection Operators and More General Spaces
3.4.4 Exercises
4 Lie Algebras
4.1 Basic Definitions
4.1.1 Lie Algebras of Linear Lie Groups
4.1.2 Exponential Map
4.1.3 Lie Algebras for the Compact Classical Lie Groups
4.1.4 Exercises
4.2 Further Constructions
4.2.1 Lie Algebra Homomorphisms
4.2.2 Lie Subgroups and Subalgebras
4.2.3 Covering Homomorphisms
4.2.4 Exercises
5 Abelian Lie Subgroups and Structure
5.1 Abelian Subgroups and Subalgebras
5.1.1 Maximal Tori and Caftan Subalgebras
5.1.2 Examples
5.1.3 Conjugacy of Cartan Subalgehras
5.1.4 Maximal Torus Theorem
5.1.5 Exercises
5.2 Structure
5.2.1 Exponential Map Revisited
5.2.2 Lie Algebra Structure
5.2.3 Commutator Theorem
5.2.4 Compact Lie Group Structure
5.2.5 Exercises
6 Roots and Associated Structures
6.1 Root Theory
6.1.1 Representations of Lie Algebras
6.1.2 Complexification of Lie Algebras
6.1.3 Weights
6.1.4 Roots
6.1.5 Compact Classical Lie Group Examples
6.1.6 Exercises
6.2 The Standard s[2, C Triple
6.2.1 Cartan Involution
6.2.2 Killing Form
6.2.3 The Standard sl2, C and su2 Triples
6.2.4 Exercises
6.3 Lattices
6.3.1 Definitions
6.3.2 Relations
6.3.3 Center and Fundamental Group
6.3.4 Exercises
6.4 Weyl Group
6.4.1 Group Picture
6.4.2 Classical Examples
6.4.3 Simple Roots and Weyl Chambers
6.4.4 The Weyl Group as a Reflection Group
6.4.5 Exercises
7 Highest Weight Theory
7.1 Highest Weights
7.1.1 Exercises
7.2 Weyl Integration Formula
7.2.1 Regular Elements
7.2.2 Main Theorem
7.2.3 Exercises
7.3 Weyl Character Formula
7.3.1 Machinery
7.3.2 Main Theorem
7.3.3 Weyl Denominator Formula
7.3.4 Weyl Dimension Formula
7.3.5 Highest Weight Classification
7.3.6 Fundamental Group
7.3.7 Exercises
7.4 Borel-Weil Theorem
7.4.1 Induced Representations
7.4.2 Complex Structure on GT
7.4.3 Holomorphic Functions
7.4.4 Main Theorem
7.4.5 Exercises
References
Index
|
|