登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『英文書』Elements Of Information Theory, Second Edition(ISBN=9780471241959)

書城自編碼: 2065789
分類:簡體書→原版英文書→计算机 Computers & Inte
作者: Thomas
國際書號(ISBN): 9780471241959
出版社:
出版日期: 2006-07-01
版次: 1 印次: 1
頁數/字數: 748/
書度/開本: 大16开 釘裝: 精装

售價:HK$ 2109.8

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
周易
《 周易 》

售價:HK$ 44.6
东南亚的传统与发展
《 东南亚的传统与发展 》

售價:HK$ 67.2
乾隆制造
《 乾隆制造 》

售價:HK$ 87.4
资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册)
《 资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册) 》

售價:HK$ 304.4
明代社会变迁时期生活质量研究
《 明代社会变迁时期生活质量研究 》

售價:HK$ 316.2
律令国家与隋唐文明
《 律令国家与隋唐文明 》

售價:HK$ 76.7
现代吴语的研究(中华现代学术名著3)
《 现代吴语的研究(中华现代学术名著3) 》

售價:HK$ 65.0
天下的当代性:世界秩序的实践与想象(新版)
《 天下的当代性:世界秩序的实践与想象(新版) 》

售價:HK$ 77.3

 

建議一齊購買:

+

HK$ 1588.6
《Convex Optimization》
內容簡介:
The latest edition of this classic is updated with new problem
sets and material
The Second Edition of this fundamental textbook maintains the
book''s tradition of clear, thought-provoking instruction. Readers
are provided once again with an instructive mix of mathematics,
physics, statistics, and information theory.
All the essential topics in information theory are covered in
detail, including entropy, data compression, channel capacity, rate
distortion, network information theory, and hypothesis testing. The
authors provide readers with a solid understanding of the
underlying theory and applications. Problem sets and a telegraphic
summary at the end of each chapter further assist readers. The
historical notes that follow each chapter recap the main
points.
The Second Edition features:
* Chapters reorganized to improve teaching
* 200 new problems
* New material on source coding, portfolio theory, and feedback
capacity
* Updated references
Now current and enhanced, the Second Edition of Elements of
Information Theory remains the ideal textbook for upper-level
undergraduate and graduate courses in electrical engineering,
statistics, and telecommunications.
An Instructor''s Manual presenting detailed solutions to all the
problems in the book is available from the Wiley editorial
department.
關於作者:
THOMAS M. COVER, PHD, is Professor in the departments of
electrical engineering and statistics, Stanford University. A
recipient of the 1991 IEEE Claude E. Shannon Award, Dr. Cover is a
past president of the IEEE Information Theory Society, a Fellow of
the IEEE and the Institute of Mathematical Statistics, and a member
of the National Academy of Engineering and the American Academy of
Arts and Science. He has authored more than 100 technical papers
and is coeditor of Open Problems in Communication and
Computation.
JOY A. THOMAS, PHD, is the Chief Scientist at Stratify, Inc., a
Silicon Valley start-up specializing in organizing unstructured
information. After receiving his PhD at Stanford, Dr. Thomas spent
more than nine years at the IBM T. J. Watson Research Center in
Yorktown Heights, New York. Dr. Thomas is a recipient of the IEEE
Charles LeGeyt Fortescue Fellowship.
目錄
Preface to the Second Edition.
Preface to the First Edition.
Acknowledgments for the Second Edition.
Acknowledgments for the First Edition.
1. Introduction and Preview.
1.1 Preview of the Book.
2. Entropy, Relative Entropy, and Mutual Information.
2.1 Entropy.
2.2 Joint Entropy and Conditional Entropy.
2.3 Relative Entropy and Mutual Information.
2.4 Relationship Between Entropy and Mutual Information.
2.5 Chain Rules for Entropy, Relative Entropy, and Mutual
Information.
2.6 Jensen’s Inequality and Its Consequences.
2.7 Log Sum Inequality and Its Applications.
2.8 Data-Processing Inequality.
2.9 Sufficient Statistics.
2.10 Fano’s Inequality.
Summary.
Problems.
Historical Notes.
3. Asymptotic Equipartition Property.
3.1 Asymptotic Equipartition Property Theorem.
3.2 Consequences of the AEP: Data Compression.
3.3 High-Probability Sets and the Typical Set.
Summary.
Problems.
Historical Notes.
4. Entropy Rates of a Stochastic Process.
4.1 Markov Chains.
4.2 Entropy Rate.
4.3 Example: Entropy Rate of a Random Walk on a Weighted
Graph.
4.4 Second Law of Thermodynamics.
4.5 Functions of Markov Chains.
Summary.
Problems.
Historical Notes.
5. Data Compression.
5.1 Examples of Codes.
5.2 Kraft Inequality.
5.3 Optimal Codes.
5.4 Bounds on the Optimal Code Length.
5.5 Kraft Inequality for Uniquely Decodable Codes.
5.6 Huffman Codes.
5.7 Some Comments on Huffman Codes.
5.8 Optimality of Huffman Codes.
5.9 Shannon–Fano–Elias Coding.
5.10 Competitive Optimality of the Shannon Code.
5.11 Generation of Discrete Distributions from Fair Coins.
Summary.
Problems.
Historical Notes.
6. Gambling and Data Compression.
6.1 The Horse Race.
6.2 Gambling and Side Information.
6.3 Dependent Horse Races and Entropy Rate.
6.4 The Entropy of English.
6.5 Data Compression and Gambling.
6.6 Gambling Estimate of the Entropy of English.
Summary.
Problems.
Historical Notes.
7. Channel Capacity.
7.1 Examples of Channel Capacity.
7.2 Symmetric Channels.
7.3 Properties of Channel Capacity.
7.4 Preview of the Channel Coding Theorem.
7.5 Definitions.
7.6 Jointly Typical Sequences.
7.7 Channel Coding Theorem.
7.8 Zero-Error Codes.
7.9 Fano’s Inequality and the Converse to the Coding Theorem.
7.10 Equality in the Converse to the Channel Coding Theorem.
7.11 Hamming Codes.
7.12 Feedback Capacity.
7.13 Source–Channel Separation Theorem.
Summary.
Problems.
Historical Notes.
8. Differential Entropy.
8.1 Definitions.
8.2 AEP for Continuous Random Variables.
8.3 Relation of Differential Entropy to Discrete Entropy.
8.4 Joint and Conditional Differential Entropy.
8.5 Relative Entropy and Mutual Information.
8.6 Properties of Differential Entropy, Relative Entropy, and
Mutual Information.
Summary.
Problems.
Historical Notes.
9. Gaussian Channel.
9.1 Gaussian Channel: Definitions.
9.2 Converse to the Coding Theorem for Gaussian Channels.
9.3 Bandlimited Channels.
9.4 Parallel Gaussian Channels.
9.5 Channels with Colored Gaussian Noise.
9.6 Gaussian Channels with Feedback.
Summary.
Problems.
Historical Notes.
10. Rate Distortion Theory.
10.1 Quantization.
10.2 Definitions.
10.3 Calculation of the Rate Distortion Function.
10.4 Converse to the Rate Distortion Theorem.
10.5 Achievability of the Rate Distortion Function.
10.6 Strongly Typical Sequences and Rate Distortion.
10.7 Characterization of the Rate Distortion Function.
10.8 Computation of Channel Capacity and the Rate Distortion
Function.
Summary.
Problems.
Historical Notes.
11. Information Theory and Statistics.
11.1 Method of Types.
11.2 Law of Large Numbers.
11.3 Universal Source Coding.
11.4 Large Deviation Theory.
11.5 Examples of Sanov’s Theorem.
11.6 Conditional Limit Theorem.
11.7 Hypothesis Testing.
11.8 Chernoff–Stein Lemma.
11.9 Chernoff Information.
11.10 Fisher Information and the Cram?er–Rao Inequality.
Summary.
Problems.
Historical Notes.
12. Maximum Entropy.
12.1 Maximum Entropy Distributions.
12.2 Examples.
12.3 Anomalous Maximum Entropy Problem.
12.4 Spectrum Estimation.
12.5 Entropy Rates of a Gaussian Process.
12.6 Burg’s Maximum Entropy Theorem.
Summary.
Problems.
Historical Notes.
13. Universal Source Coding.
13.1 Universal Codes and Channel Capacity.
13.2 Universal Coding for Binary Sequences.
13.3 Arithmetic Coding.
13.4 Lempel–Ziv Coding.
13.5 Optimality of Lempel–Ziv Algorithms.
Compression.
Summary.
Problems.
Historical Notes.
14. Kolmogorov Complexity.
14.1 Models of Computation.
14.2 Kolmogorov Complexity: Definitions and Examples.
14.3 Kolmogorov Complexity and Entropy.
14.4 Kolmogorov Complexity of Integers.
14.5 Algorithmically Random and Incompressible Sequences.
14.6 Universal Probability.
14.7 Kolmogorov complexity.
14.9 Universal Gambling.
14.10 Occam’s Razor.
14.11 Kolmogorov Complexity and Universal Probability.
14.12 Kolmogorov Sufficient Statistic.
14.13 Minimum Description Length Principle.
Summary.
Problems.
Historical Notes.
15. Network Information Theory.
15.1 Gaussian Multiple-User Channels.
15.2 Jointly Typical Sequences.
15.3 Multiple-Access Channel.
15.4 Encoding of Correlated Sources.
15.5 Duality Between Slepian–Wolf Encoding and Multiple-Access
Channels.
15.6 Broadcast Channel.
15.7 Relay Channel.
15.8 Source Coding with Side Information.
15.9 Rate Distortion with Side Information.
15.10 General Multiterminal Networks.
Summary.
Problems.
Historical Notes.
16. Information Theory and Portfolio Theory.
16.1 The Stock Market: Some Definitions.
16.2 Kuhn–Tucker Characterization of the Log-Optimal
Portfolio.
16.3 Asymptotic Optimality of the Log-Optimal Portfolio.
16.4 Side Information and the Growth Rate.
16.5 Investment in Stationary Markets.
16.6 Competitive Optimality of the Log-Optimal Portfolio.
16.7 Universal Portfolios.
16.8 Shannon–McMillan–Breiman Theorem General AEP.
Summary.
Problems.
Historical Notes.
17. Inequalities in Information Theory.
17.1 Basic Inequalities of Information Theory.
17.2 Differential Entropy.
17.3 Bounds on Entropy and Relative Entropy.
17.4 Inequalities for Types.
17.5 Combinatorial Bounds on Entropy.
17.6 Entropy Rates of Subsets.
17.7 Entropy and Fisher Information.
17.8 Entropy Power Inequality and Brunn–Minkowski Inequality.
17.9 Inequalities for Determinants.
17.10 Inequalities for Ratios of Determinants.
Summary.
Problems.
Historical Notes.
Bibliography.
List of Symbols.
Index.

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.