登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』实用数据分析(全面阐释分类分析、聚类分析、数据可视化及预测方面的各种技术和方法,为高效利用数据分析工具和算法进行数据分析提供最佳指导)

書城自編碼: 2451789
分類:簡體書→大陸圖書→計算機/網絡计算机理论
作者: Hector Cuesta
國際書號(ISBN): 9787111476238
出版社: 机械工业出版社
出版日期: 2014-09-01
版次: 1 印次: 1
頁數/字數: 231/
書度/開本: 16开

售價:HK$ 153.4

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
第十三位陪审员
《 第十三位陪审员 》

售價:HK$ 53.8
微观经济学(第三版)【2024诺贝尔经济学奖获奖者作品】
《 微观经济学(第三版)【2024诺贝尔经济学奖获奖者作品】 》

售價:HK$ 155.7
Python贝叶斯深度学习
《 Python贝叶斯深度学习 》

售價:HK$ 89.4
文本的密码:社会语境中的宋代文学
《 文本的密码:社会语境中的宋代文学 》

售價:HK$ 67.2
启微·狂骉年代:西洋赛马在中国
《 启微·狂骉年代:西洋赛马在中国 》

售價:HK$ 78.4
有趣的中国古建筑
《 有趣的中国古建筑 》

售價:HK$ 67.0
十一年夏至
《 十一年夏至 》

售價:HK$ 76.2
如何打造成功的商业赛事
《 如何打造成功的商业赛事 》

售價:HK$ 89.5

 

建議一齊購買:

+

HK$ 90.7
《Python高手之路》
+

HK$ 109.2
《编程导论》
+

HK$ 146.2
《数据科学实战》
+

HK$ 127.4
《R与Hadoop大数据分析实战(首部全面讲解R语言与Hado》
+

HK$ 153.4
《有趣的统计:75招学会数据分析》
編輯推薦:
当前众多中小型企业都面临着大量的数据,但缺乏实用的技术支持定量分析。通过使用最新的开源技术,利用数据分析技术能够帮助这些企业提供更好的客户服务,可视化客户需求,增强对未来产品性能的洞见力。奎斯塔编著的《实用数据分析大数据技术丛书》详细阐释了机器学习技术、社会化网络分析以及计量经济学,可以帮助你了解数据的性质,并把它转化为洞察力。
內容簡介:
本书共14章,主要内容包括:第1章探讨数据分析的基本原理和数据分析步骤。第2章解释如何清洗并准备好数据并介绍了数据清洗工具OpenRefine。第3章展示在JavaScript可视化框架下应用D3.js语言来实现各类数据的可视化方法。第4章介绍如何应用朴素贝叶斯算法来区分垃圾邮件。第5章介绍了一个应用动态时间规整方法来寻找图像间相似性的项目。第6章解释如何使用随机游走算法和可视化的D3.js动画技术来模拟股票价格。第7章介绍核岭回归(KRR)的原理以及如何使用此方法和时间序列数据来预测黄金价格。第8章描述如何使用支持向量机的方法进行分类分析。第9章应用细胞自动机的方法对传染病进行建模。第10章解释如何应用Gephi从Facebook获取你的社会化媒体图谱并使之实现可视化。第11章介绍如何应用Twitter数据进行情感分析。第12章介绍使用MongoDB进行数据处理和聚合。第13章详细介绍了如何在MongoDB数据库中应用MapReduce编程模型。第14章介绍如何应用IPython和Wakari开展线上数据分析。
目錄
译者序

前言
评审者简介
致谢
第1章 开始
1.1 计算机科学
1.2 人工智能
1.3 机器学习
1.4 统计学
1.5 数学
1.6 专业领域知识
1.7 数据、信息和知识
1.8 数据的本质
1.9 数据分析过程
1.9.1 问题
1.9.2 数据准备
1.9.3 数据探索
1.9.4 预测建模
1.9.5 结果可视化
1.10 定量与定性数据分析
1.11 数据可视化的重要性
1.12 大数据
1.12.1 传感器和摄像头
1.12.2 社会化网络分析
1.12.3 本书的工具和练习
1.12.4 为什么使用python
1.12.5 为什么使用mlpy
1.12.6 为什么使用d3.js
1.12.7 为什么使用mongodb
1.13 小结
第2章 数据准备与处理
2.1 数据源
2.1.1 开源数据
2.1.2 文本文件
2.1.3 excel文件
2.1.4 sql数据库
2.1.5 nosql数据库
2.1.6 多媒体
2.1.7 网页检索
2.2 数据清洗
2.2.1 统计方法
2.2.2 文本解析
2.2.3 数据转化
2.3 数据格式
2.3.1 csv
2.3.2 json
2.3.3 xml
2.3.4 yaml
2.4 开始使用openrefine工具
2.4.1 text facet
2.4.2 聚类
2.4.3 文件过滤器
2.4.4 numeric facet
2.4.5 数据转化
2.4.6 数据输出
2.4.7 处理历史
2.5 小结
第3章 数据可视化
3.1 数据导向文件
3.1.1 html
3.1.2 dom
3.1.3 css
3.1.4 javascript
3.1.5 svg
3.2 开始使用d3.js
3.2.1 柱状图
3.2.2 饼图
3.2.3 散点图
3.2.4 单线图
3.2.5 多线图
3.3 交互与动画
3.4 小结
第4章 文本分类
4.1 学习和分类
4.2 贝叶斯分类
4.3 e-mail主题测试器
4.4 数据
4.5 算法
4.6 分类器的准确性
4.7 小结
第5章 基于相似性的图像检索
5.1 图像相似性搜索
5.2 动态时间规整
5.3 处理图像数据集
5.4 执行dtw
5.5 结果分析
5.6 小结
第6章 模拟股票价格
6.1 金融时间序列
6.2 随机游走模拟
6.3 蒙特·卡罗方法
6.4 生成随机数
6.5 用d3.js实现
6.6 小结
第7章 预测黄金价格
7.1 处理时间序列数据
7.2 平滑时间序列
7.3 数据——历史黄金价格
7.4 非线性回归
7.4.1 核岭回归
7.4.2 平滑黄金价格时间序列
7.4.3 平滑时间序列的预测
7.4.4 对比预测值
7.5 小结
第8章 使用支持向量机的方法进行分析
8.1 理解多变量数据集
8.2 降维
8.2.1 线性无差别分析
8.2.2 主成分分析
8.3 使用支持向量机
8.3.1 核函数
8.3.2 双螺旋问题
8.3.3 在mlpy中执行svm
8.4 小结
第9章 应用细胞自动机的方法对传染病进行建模
9.1 流行病学简介
9.2 流行病模型
9.2.1 sir模型
9.2.2 使用scipy来解决sir模型的常微分方程
9.2.3 sirs模型
9.3 对细胞自动机进行建模
9.3.1 细胞、状态、网格和邻域
9.3.2 整体随机访问模型
9.4 通过d3.js模拟ca中的sirs模型
9.5 小结
第10章 应用社会化图谱
10.1 图谱的结构
10.1.1 间接图谱
10.1.2 直接图谱
10.2 社会化网络分析
10.3 捕获facebook图谱
10.4 使用gephi对图谱进行再现
10.5 统计分析
10.6 度的分布
10.6.1 图谱直方图
10.6.2 集中度
10.7 将gdf转化为json
10.8 在d3.js环境下进行图谱可视化
10.9 小结
第11章 对twitter数据进行情感分析
11.1 解析twitter数据
11.1.1 tweet
11.1.2 粉丝
11.1.3 热门话题
11.2 使用oauth访问api
11.3 开始使用twython
11.3.1 简单查询
11.3.2 处理时间表
11.3.3 处理粉丝
11.3.4 处理地点和趋势信息
11.4 情感分类
11.4.1 anew
11.4.2 语料库
11.5 使用nltk
11.5.1 单词包
11.5.2 朴素贝叶斯
11.5.3 tweet的情感分析
11.6 小结
第12章 使用mongodb进行数据处理和聚合
12.1 开始使用mongodb
12.1.1 数据库
12.1.2 集合
12.1.3 文件
12.1.4 mongo shell
12.1.5 insertupdatedelete
12.1.6 queries查询
12.2 数据准备
12.2.1 使用openrefine进行数据转换
12.2.2 通过pymongo来插入文件
12.3 分组
12.4 聚合框架
12.4.1 流水线
12.4.2 表达式
12.5 小结
第13章 使用mapreduce方法
13.1 mapreduce概述
13.2 编程模型
13.3 在mongodb中使用mapreduce
13.3.1 map函数
13.3.2 reduce函数
13.3.3 使用mongo shell
13.3.4 使用umongo
13.3.5 使用pymongo
13.4 过滤输入集合
13.5 分组和聚合
13.6 文字云对tweet中最常见的积极词汇进行可视化
13.7 小结
第14章 使用ipython和wakari进行在线数据分析
14.1 开始使用wakari
14.2 开始使用ipython记事本
14.3 通过pil进行图像处理简介
14.3.1 打开一个图像
14.3.2 图像直方图
14.3.3 过滤
14.3.4 操作
14.3.5 转化
14.4 使用pandas
14.4.1 处理时间序列
14.4.2 通过数据框架来操作多变量数据集
14.4.3 分组、聚合和相关
14.5 使用ipython进行多机处理
14.6 分享你的记事本
14.7 小结
附录 环境搭建

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.