登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』恒星结构与演化(第二版)(英文影印版)

書城自編碼: 2515513
分類:簡體書→大陸圖書→自然科學天文学
作者: 基彭汉 (R.Kippenhahn),魏格特 (A.Weig
國際書號(ISBN): 9787301251751
出版社: 北京大学出版社
出版日期: 2014-12-01
版次: 1 印次: 1
頁數/字數: 604/748000
書度/開本: 16开 釘裝: 平装

售價:HK$ 275.6

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
大模型启示录
《 大模型启示录 》

售價:HK$ 112.0
东法西渐:19世纪前西方对中国法的记述与评价
《 东法西渐:19世纪前西方对中国法的记述与评价 》

售價:HK$ 201.6
养育男孩:官方升级版
《 养育男孩:官方升级版 》

售價:HK$ 50.4
小原流花道技法教程
《 小原流花道技法教程 》

售價:HK$ 109.8
少女映像室 唯美人像摄影从入门到实战
《 少女映像室 唯美人像摄影从入门到实战 》

售價:HK$ 110.9
詹姆斯·伍德系列:不负责任的自我:论笑与小说(“美国图书评论奖”入围作品 当代重要文学批评家詹姆斯·伍德对“文学中的笑与喜剧”的精湛研究)
《 詹姆斯·伍德系列:不负责任的自我:论笑与小说(“美国图书评论奖”入围作品 当代重要文学批评家詹姆斯·伍德对“文学中的笑与喜剧”的精湛研究) 》

售價:HK$ 87.4
武当内家散手
《 武当内家散手 》

售價:HK$ 50.4
诛吕:“诸吕之乱”的真相与吕太后时期的权力结构
《 诛吕:“诸吕之乱”的真相与吕太后时期的权力结构 》

售價:HK$ 99.7

 

建議一齊購買:

+

HK$ 201.7
《理论物理学教程 第四卷 量子电动力学(第四版)》
+

HK$ 75.9
《天文光谱学——天文光谱的原子与分子物理学导论(第二版)(英文》
+

HK$ 293.8
《太阳系物理与化学(第二版)(英文影印版)》
+

HK$ 153.4
《中国科学院国家天文台 天文学系列--宇宙大尺度结构的形成(第》
編輯推薦:
恒星是最常见的星体。满天星斗中,除了有限的几颗外都是恒星。而白矮星、中子星和黑洞也都是恒星演化的产物。恒星并不能恒久存在,也有初生、也会死亡。《恒星结构与演化(第二版)英文影印版》正是刻画恒星壮丽一生的学术著作。科研工作者乃至有一定基础的天文爱好者都不应错过这一佳作。
內容簡介:
《恒星结构与演化(第二版)英文影印版》详细地介绍了恒星的结构和演化理论。从恒星的组成成分讲起,讲解了恒星中的热核反应过程、热核反应之后的产物、超新星爆发等等一系列想象和理论。对于白矮星、中子星和黑洞也都做了详细介绍。本书适合天体物理方向的科研工作者和研究生阅读。
關於作者:
基彭汉R. Kippenhahn,德国哥廷根教授。
目錄
Part I The Basic Equations

1 Coordinates, Mass Distribution, and Gravitational Field
in Spherical Stars
1.1 Eulerian Description
1.2 Lagrangian Description
1.3 The Gravitational Field

2 Conservation of Momentum
2.1 Hydrostatic Equilibrium
2.2 The Role of Density and Simple Solutions
2.3 Simple Estimates of Central Values Pc; Tc
2.4 The Equation of Motion for Spherical Symmetry
2.5 The Non-spherical Case
2.6 Hydrostatic Equilibrium in General Relativity
2.7 The Piston Model

3 The Virial Theorem
3.1 Stars in Hydrostatic Equilibrium
3.2 The Virial Theorem of the Piston Model
3.3 The Kelvin-Helmholtz Timescale
3.4 The Virial Theorem for Non-vanishing Surface Pressure

4 Conservation of Energy
4.1 Thermodynamic Relations
4.2 The Perfect Gas and the Mean MolecularWeight
4.3 Thermodynamic Quantities for the Perfect, Monatomic Gas
4.4 Energy Conservation in Stars
4.5 Global and Local Energy Conservation
4.6 Timescales

5 Transport of Energy by Radiation and Conduction
5.1 Radiative Transport of Energy
5.1.1 Basic Estimates
5.1.2 Diffusion of Radiative Energy
5.1.3 The Rosseland Mean for
5.2 Conductive Transport of Energy
5.3 The Thermal Adjustment Time of a Star
5.4 Thermal Properties of the Piston Model

6 Stability Against Local, Non-spherical Perturbations
6.1 Dynamical Instability
6.2 Oscillation of a Displaced Element
6.3 Vibrational Stability
6.4 The Thermal Adjustment Time
6.5 Secular Instability
6.6 The Stability of the Piston Model

7 Transport of Energy by Convection
7.1 The Basic Picture
7.2 Dimensionless Equations
7.3 Limiting Cases, Solutions, Discussion
7.4 Extensions of the Mixing-Length Theory

8 The Chemical Composition
8.1 Relative Mass Abundances
8.2 Variation of Composition with Time
8.2.1 Radiative Regions
8.2.2 Diffusion
8.2.3 Convective Regions

9 Mass Loss

Part II The Overall Problem

10 The Differential Equations of Stellar Evolution
10.1 The Full Set of Equations
10.2 Timescales and Simplifications

11 Boundary Conditions
11.1 Central Conditions
11.2 Surface Conditions
11.3 Influence of the Surface Conditions and Properties of
Envelope Solutions
11.3.1 Radiative Envelopes
11.3.2 Convective Envelopes
11.3.3 Summary
11.3.4 The T _r Stratification

12 Numerical Procedure
12.1 The ShootingMethod
12.2 The Henyey Method
12.3 Treatment of the First- and Second-Order Time Derivatives
12.4 Treatment of the Diffusion Equation
12.5 Treatment of Mass Loss
12.6 Existence and Uniqueness

Part III Properties of Stellar Matter

13 The Perfect Gas with Radiation
13.1 Radiation Pressure
13.2 Thermodynamic Quantities

14 Ionization
14.1 The Boltzmann and Saha Formulae
14.2 Ionization of Hydrogen
14.3 Thermodynamical Quantities for a Pure Hydrogen Gas
14.4 Hydrogen-HeliumMixture
14.5 The General Case
14.6 Limitation of the Saha Formula

15 The Degenerate Electron Gas
15.1 Consequences of the Pauli Principle
15.2 The Completely Degenerate Electron Gas
15.3 Limiting Cases
15.4 Partial Degeneracy of the Electron Gas

16 The Equation of State of Stellar Matter
16.1 The Ion Gas
16.2 The Equation of State
16.3 Thermodynamic Quantities
16.4 Crystallization
16.5 Neutronization
16.6 Real Gas Effects

17 Opacity
17.1 Electron Scattering
17.2 Absorption Due to Free-Free Transitions
17.3 Bound-Free Transitions
17.4 Bound-Bound Transitions
17.5 The Negative Hydrogen Ion
17.6 Conduction
17.7 Molecular Opacities
17.8 Opacity Tables

18 Nuclear Energy Production
18.1 Basic Considerations
18.2 Nuclear Cross Sections
18.3 Thermonuclear Reaction Rates
18.4 Electron Shielding
18.5 The Major Nuclear Burning Stages
18.5.1 Hydrogen Burning.
18.5.2 Helium Burning
18.5.3 Carbon Burning and Beyond
18.6 Neutron-Capture Nucleosynthesis
18.7 Neutrinos

Part IV Simple Stellar Models

19 Polytropic Gaseous Spheres
19.1 Polytropic Relations
19.2 Polytropic Stellar Models
19.3 Properties of the Solutions
19.4 Application to Stars
19.5 Radiation Pressure and the Polytrope n D 3.
19.6 Polytropic Stellar Models with Fixed K
19.7 Chandrasekhar''s Limiting Mass
19.8 Isothermal Spheres of an Ideal Gas
19.9 Gravitational and Total Energy for Polytropes
19.10 Supermassive Stars
19.11 A Collapsing Polytrope

20 Homology Relations
20.1 Definitions and Basic Relations
20.2 Applications to Simple Material Functions
20.2.1 The Case ? D 0
20.2.2 The Case ? D ? D '' D 1; a D b D 0
20.2.3 The Role of the Equation of State
20.3 Homologous Contraction

21 Simple Models in the U-V Plane
21.1 The U-V Plane
21.2 Radiative Envelope Solutions
21.3 Fitting of a Convective Core
21.4 Fitting of an Isothermal Core

22 The Zero-AgeMain Sequence
22.1 Surface Values
22.2 Interior Solutions
22.3 Convective Regions
22.4 Extreme Values of M
22.5 The Eddington Luminosity

23 Other Main Sequences
23.1 The Helium Main Sequence.
23.2 The Carbon Main Sequence.
23.3 Generalized Main Sequences

24 The Hayashi Line
24.1 Luminosity of Fully ConvectiveModels
24.2 A Simple Description of the Hayashi Line
24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region
24.4 Numerical Results
24.5 Limitations for Fully ConvectiveModels

25 Stability Considerations
25.1 General Remarks
25.2 Stability of the Piston Model
25.2.1 Dynamical Stability
25.2.2 Inclusion of Non-adiabatic Effects
25.3 Stellar Stability
25.3.1 Perturbation Equations
25.3.2 Dynamical Stability
25.3.3 Non-adiabatic Effects
25.3.4 The Gravothermal Specific Heat
25.3.5 Secular Stability Behaviour of Nuclear Burning

Part V Early Stellar Evolution

26 The Onset of Star Formation
26.1 The Jeans Criterion
26.1.1 An Infinite Homogeneous Medium.
26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium
26.2 Instability in the Spherical Case
26.3 Fragmentation

27 The Formation of Protostars.
27.1 Free-Fall Collapse of a Homogeneous Sphere
27.2 Collapse onto a Condensed Object
27.3 A Collapse Calculation
27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core
27.5 Core Collapse
27.6 Evolution in the Hertzsprung-Russell Diagram

28 Pre-Main-Sequence Contraction.
28.1 Homologous Contraction of a Gaseous Sphere
28.2 Approach to the Zero-Age Main Sequence

29 From the Initial to the Present Sun
29.1 Known Solar Data
29.2 Choosing the Initial Model
29.3 A Standard Solar Model
29.4 Results of Helioseismology.
29.5 Solar Neutrinos.

30 Evolution on the Main Sequence
30.1 Change in the Hydrogen Content
30.2 Evolution in the Hertzsprung-Russell Diagram
30.3 Timescales for Central Hydrogen Burning
30.4 Complications Connected with Convection
30.4.1 Convective Overshooting
30.4.2 Semiconvection
30.5 The Sch¨onberg-Chandrasekhar Limit
30.5.1 A Simple Approach: The Virial Theorem and Homology
30.5.2 Integrations for Core and Envelope.
30.5.3 Complete Solutions for Stars with Isothermal Cores

Part VI Post-Main-Sequence Evolution

31 Evolution Through Helium Burning: Intermediate-Mass Stars
31.1 Crossing the Hertzsprung Gap
31.2 Central Helium Burning
31.3 The Cepheid Phase.
31.4 To Loop or Not to Loop
31.5 After Central Helium Burning

32 Evolution Through Helium Burning: Massive Stars
32.1 Semiconvection
32.2 Overshooting
32.3 Mass Loss

33 Evolution Through Helium Burning: Low-Mass Stars
33.1 Post-Main-Sequence Evolution
33.2 Shell-Source Homology
33.3 Evolution Along the Red Giant Branch.
33.4 The Helium Flash
33.5 Numerical Results for the Helium Flash
33.6 Evolution After the Helium Flash.
33.7 Evolution from the Zero-Age Horizontal Branch

Part VII Late Phases of Stellar Evolution

34 Evolution on the Asymptotic Giant Branch
34.1 Nuclear Shells on the Asymptotic Giant Branch
34.2 Shell Sources and Their Stability.
34.3 Thermal Pulses of a Shell Source.
34.4 The Core-Mass-Luminosity Relation for Large Core Masses.
34.5 Nucleosynthesis on the AGB
34.6 Mass Loss on the AGB
34.7 A Sample AGB Evolution
34.8 Super-AGB Stars.
34.9 Post-AGB Evolution

35 Later Phases of Core Evolution
35.1 Nuclear Cycles
35.2 Evolution of the Central Region

36 Final Explosions and Collapse
36.1 The Evolution of the CO-Core
36.2 Carbon Ignition in Degenerate Cores
36.2.1 The Carbon Flash
36.2.2 Nuclear Statistical Equilibrium
36.2.3 Hydrostatic and Convective Adjustment
36.2.4 Combustion Fronts.
36.2.5 Carbon Burning in AccretingWhite Dwarfs
36.3 Collapse of Cores of Massive Stars
36.3.1 Simple Collapse Solutions
36.3.2 The Reflection of the Infall
36.3.3 Effects of Neutrinos
36.3.4 Electron-Capture Supernovae
36.3.5 Pair-Creation Instability
36.4 The Supernova-Gamma-Ray-Burst Connection

Part VIII Compact Objects

37 White Dwarfs
37.1 Chandrasekhar''s Theory
37.2 The Corrected Mechanical Structure
37.2.1 Crystallization
37.2.2 Pycnonuclear Reactions
37.2.3 Inverse ˇ Decays
37.2.4 Nuclear Equilibrium
37.3 Thermal Properties and Evolution of White Dwarfs

38 Neutron Stars
38.1 Cold Matter Beyond Neutron Drip
38.2 Models of Neutron Stars
39 Black Holes Part IX Pulsating Stars

40 Adiabatic Spherical Pulsations
40.1 The Eigenvalue Problem.
40.2 The Homogeneous Sphere
40.3 Pulsating Polytropes

41 Non-adiabatic Spherical Pulsations
41.1 Vibrational Instability of the Piston Model
41.2 The Quasi-adiabatic Approximation
41.3 The Energy Integral
41.3.1 The _ Mechanism
41.3.2 The " Mechanism
41.4 Stars Driven by the _ Mechanism: The Instability Strip
41.5 Stars Driven by the " Mechanism.

42 Non-radial Stellar Oscillations
42.1 Perturbations of the Equilibrium Model
42.2 Normal Modes and Dimensionless Variables
42.3 The Eigenspectra
42.4 Stars Showing Non-radial Oscillations

Part X Stellar Rotation

43 The Mechanics of Rotating Stellar Models
43.1 Uniformly Rotating Liquid Bodies
43.2 The Roche Model
43.3 Slowly Rotating Polytropes.

44 The Thermodynamics of Rotating Stellar Models
44.1 Conservative Rotation.
44.2 Von Zeipel''s Theorem.
44.3 Meridional Circulation
44.4 The Non-conservative Case.
44.5 The Eddington-Sweet Timescale.
44.6 Meridional Circulation in Inhomogeneous Stars

45 The Angular-Velocity Distribution in Stars
45.1 Viscosity
45.2 Dynamical Stability
45.3 Secular Stability
References
Index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.