登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』聚多糖纳米晶:化学与应用=Polysaccharide-Based Nanocrystals:Chemistry and Applications

書城自編碼: 2528086
分類:簡體書→大陸圖書→自然科學化學
作者: 黄进,Peter R.,Chang Ning Lin,Ala
國際書號(ISBN): 9787122229847
出版社: 化学工业出版社
出版日期: 2015-03-01
版次: 1 印次: 1
頁數/字數: 307/656000
書度/開本: 16开 釘裝: 精装

售價:HK$ 518.0

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
知宋·宋代之科举
《 知宋·宋代之科举 》

售價:HK$ 99.7
那本书是(吉竹伸介与又吉直树 天才联动!)
《 那本书是(吉竹伸介与又吉直树 天才联动!) 》

售價:HK$ 99.7
传播的跃迁:人工智能如何革新人类的交流
《 传播的跃迁:人工智能如何革新人类的交流 》

售價:HK$ 110.9
纯粹·古代中国的历史与制度
《 纯粹·古代中国的历史与制度 》

售價:HK$ 62.7
生活来来往往  别等来日方长 新版(伍佰:“讲好了这一辈子,再度重相逢。”别等,别遗憾!珍惜当下才是最好的解药)
《 生活来来往往 别等来日方长 新版(伍佰:“讲好了这一辈子,再度重相逢。”别等,别遗憾!珍惜当下才是最好的解药) 》

售價:HK$ 58.2
一个英国军事顾问眼中的二战
《 一个英国军事顾问眼中的二战 》

售價:HK$ 277.8
就业、利息和货币通论(徐毓枬译本)(经济学名著译丛)
《 就业、利息和货币通论(徐毓枬译本)(经济学名著译丛) 》

售價:HK$ 67.2
瘦肝
《 瘦肝 》

售價:HK$ 99.7

 

建議一齊購買:

+

HK$ 93.6
《结晶学教程(第2版)》
+

HK$ 124.8
《单活性中心多相催化剂设计与应用》
+

HK$ 115.1
《化学--点石成金从这里开始(二版)》
+

HK$ 289.1
《化学工作者手册--分析化学实验室手册》
+

HK$ 76.7
《微型无机化学实验(吴茂英)(二版)》
+

HK$ 132.8
《综合化学:无机化学?分析化学?有机化学》
編輯推薦:
《先进功能材料丛书》是由师昌绪院士主编的“十二五”规划重点图书。
聚多糖纳米晶是以保护环境和降低石油消耗为目标的、生物可再生、可降解的新型功能材料。
1第一部系统介绍聚多糖纳米晶及其材料的化学性质、加工技术和应用的参考书。
2本书是作者在过去十年中研究工作的凝炼。
3本书语言简明、数据图表丰富。
4本书列举了大量最新研究成果作为示例,有助于读者的理解、记忆和灵活运用。
內容簡介:
本书采用简明的语言、丰富的数据图表,阐明了来自天然生物质资源的聚多糖纳米晶的提取、结构、性质、 化学修饰、材料制备等方面的理论知识和实践经验,总结了聚多糖纳米晶改性材料功能化、高性能化的研究思路和技术方案。不仅包含作者在过去十年中以保护环境和降低石油消耗为目标,围绕可再生、可生物降解的聚多糖纳米晶发展成为高性能材料及功能材料的研究工作的凝练,同时涵盖了国内外同行的优秀研究成果。
本书主要包括纤维素纳米晶、甲壳素纳米晶及淀粉纳米晶的制备、化学和物理改性、纳米复合材料和功能材料构建的相关理论和技术等内容,并且对聚多糖纳米晶的理论研究体系建立、应用拓展及发展方向等进行了展望。
本书可供生物质化学与化工、高分子科学、环境科学、材料科学、农业化学、纳米科学与技术等相关专业的研究生学习使用,也可作为相关科研工作和工程技术人员的参考书。
關於作者:
黄进,武汉理工大学化学工程学院,教授, 黄进,博士、武汉理工大学教授、博士生导师,IUPAC、中国化学会、中国微米纳米技术学会纳米科学技术分会、中国毒理学会纳米毒理学专业委员会、中国生物材料委员会会员,先后受聘为中国科学院高级访问学者、法国Grenoble国立理工学院访问学者、华东师范大学兼职教授、武汉纺织大学客座教授,入选“教育部新世纪优秀人才支持计划”、“江苏省高层次创新创业人才引进计划”和“武汉市青年科技晨光计划”。
目錄
List of Contributors
Foreword
Preface
1 Polysaccharide Nanocrystals: Current Status and Prospects in Materi
Science
Jin Huang, Peter R. Chang, and Alain Dufresne
1.1 Introduction to Polysaccharide Nanocrystals
1.2 Current Application of Polysaccharide Nanocrystals in Material
Science
1.3 Prospects for Polysaccharide Nanocrystal-Based Materials
List of Abbreviations
References
2 Structure and Properties of Polysaccharide Nanocrystals
Fei Hu, Shiyu Fu, Jin Huang, Debbie P. Anderson, and Peter R. Chang
2.1 Introduction
2.2 Cellulose Nanocrystals
2.2.1 Preparation of Cellulose Nanocrystals
2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals
2.2.1.2 Eects of Acid Type
2.2.1.3 Eects of Pretreatment
2.2.2 Structure and Properties of Cellulose Nanocrystals
2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals
2.2.2.2 Physical Properties of Cellulose Nanocrystals
2.3 Chitin Nanocrystals
2.3.1 Preparation of Chitin Nanocrystals
2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis
2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation
2.3.2 Structure and Properties of Chitin Nanocrystals
2.3.2.1 Structure and Rigidity of Chitin Nanocrystals
2.3.2.2 Properties of Chitin Nanocrystal Suspensions
2.4 Starch Nanocrystals
2.4.1 Preparation of Starch Nanocrystals
2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis
2.4.1.2 Eect of Ultrasonic Treatment
2.4.1.3 Eect of Pretreatment
2.4.2 Structure and Properties of Starch Nanocrystals
2.4.2.1 Structure of Starch Nanocrystals
2.4.2.2 Properties of Starch Nanocrystal Suspensions
2.5 Conclusion and Prospects
List of Abbreviations
References
3 Surface Modication of Polysaccharide Nanocrystals
Ning Lin and Alain Dufresne
3.1 Introduction
3.2 Surface Chemistry of Polysaccharide Nanocrystals
3.2.1 Surface Hydroxyl Groups
3.2.2 Surface Groups Originating from Various Extraction Methods
3.3 Approaches and Strategies for Surface Modication
3.3.1 Purpose and Challenge of Surface Modication
3.3.2 Comparison of Dierent Approaches and Strategies of Surface
Modication
3.4 Adsorption of Surfactant
3.4.1 Anionic Surfactant
3.4.2 Cationic Surfactant
3.4.3 Nonionic Surfactant
3.5 Hydrophobic Groups Resulting from Chemical Derivatization
3.5.1 Acetyl and Ester Groups with Acetylation and Esterication
3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation
3.5.3 Derivatization with Isocyanate Carboamination
3.5.4 Silyl Groups Resulting from Silylation
3.5.5 Cationic Groups Resulting from Cationization
3.6 Polymeric Chains from Physical Absorption or Chemical
Grafting
3.6.1 Hydrophilic Polymer
3.6.2 Polyester
3.6.3 Polyolen
3.6.4 Block Copolymer
3.6.5 Polyurethane andWaterborne Polyurethane
3.6.6 Other Hydrophobic Polymer
3.7 Advanced Functional Groups and Modication
3.7.1 Fluorescent and Dye Molecules
3.7.2 Amino Acid and DNA
3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals
3.7.4 Photobactericidal Porphyrin Molecule
3.7.5 Imidazolium Molecule
3.7.6 Cyclodextrin Molecule and Pluronic Polymer
3.8 Concluding Remarks
List of Abbreviations
References
4 Preparation of Polysaccharide Nanocrystal-Based
Nanocomposites
Hou-Yong Yu, Jin Huang, Youli Chen, and Peter R. Chang
4.1 Introduction
4.2 CastingEvaporation Processing
4.2.1 Solution CastingEvaporation Processing
4.2.2 Solution Casting in Aqueous Medium
4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous
Medium
4.2.2.2 Blending with Hydrophilic Polymers
4.2.2.3 Blending with Hydrophobic Polymers
4.2.3 Solution Casting in Organic Medium
4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic
Medium
4.2.3.2 Blending with Polymers in Organic Solvent
4.3 hermoprocessing Methods
4.3.1 hermoplastic Materials Modied with Polysaccharide
Nanocrystals
4.3.2 Inuence of Surface Modication of Polysaccharide Nanocrystals on
Nanocompositehermoprocessing
4.4 Preparation of Nanobers by Electrospinning Technology
4.4.1 Electrospinning Technology
4.4.1.1 Concepts
4.4.1.2 Formation Process of Nanobers
4.4.1.3 Basic Electrospinning Parameters and Devices
4.4.1.4 Newly Emerging Electrospinning Techniques
4.4.2 Nanocomposite Nanobers Filled with Polysaccharide
Nanocrystals
4.4.2.1 Electrospun Nanobers in Aqueous Medium
4.4.2.2 Electrospun Nanobers in Non-aqueous Medium
4.5 Sol–Gel Method
4.5.1 Concepts of Sol–Gel Process
4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites
Prepared by Sol–GelMethod
4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template
4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal
Template
4.5.3.2 Chiral Porous Materials
4.5.3.3 Chiral Porous Carbon Materials
4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials
4.6 Self-Assembly Method
4.6.1 Overview of Self-Assembly Method
4.6.2 Self-Assembly Method Toward Polysaccharide
Nanocrystal-Modied Materials
4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous
Medium
4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic
Medium
4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film
4.6.3 Polysaccharide Nanocrystal-Modied Materials Prepared by LBL
Method
4.7 Other Methods and Prospects
List of Abbreviations
References
5 Polysaccharide Nanocrystal-Reinforced Nanocomposites
Hanieh Kargarzadeh and Ishak Ahmad
5.1 Introduction
5.2 Rubber-Based Nanocomposites
5.3 Polyolen-Based Nanocomposites
5.4 Polyurethane andWaterborne Polyurethane-Based
Nanocomposites
5.5 Polyester-Based Nanocomposites
5.6 Starch-Based Nanocomposites
5.7 Protein-Based Nanocomposites
5.8 Concluding Remarks
List of Abbreviations
References
6 Polysaccharide Nanocrystals-Based Materials for Advanced
Applications
Ning Lin, Jin Huang, and Alain Dufresne
6.1 Introduction
6.2 Surface Characteristics Induced Functional Nanomaterials
6.2.1 Active Groups
6.2.1.1 Importing Functional Groups or Molecules
6.2.1.2 Template for Synthesizing Inorganic Nanoparticles
6.2.2 Surface Charges and Hydrophilicity
6.2.2.1 Emulsion Nanostabilizer
6.2.2.2 High-Eciency Adsorption
6.2.2.3 Permselective Membrane
6.2.3 Nanoscale and High Surface Area
6.2.3.1 Surface Cell Cultivation
6.2.3.2 Water Decontamination
6.3 Nano-Reinforcing Eects in Functional Nanomaterials
6.3.1 Soft Matter
6.3.1.1 Hydrogel
6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanosca?old
6.3.2 Special Mechanical Materials
6.3.3 Self-Healable and Shape-Memory Materials
6.3.4 Polymeric Electrolytes and Battery
6.3.5 Semi-conducting Material
6.4 Optical Materials Derived from Liquid Crystalline Property
6.5 Special Films and Systems Ascribed to Barrier Property
6.5.1 Drug Delivery – Barrier for Drug Molecules
6.5.2 Barrier Nanocomposites – Barrier forWater and Oxygen
6.6 Other Functional Applications
6.7 Concluding Remarks
List of Abbreviations
References
7 Characterization of Polysaccharide Nanocrystal-Based Materials
Alain Dufresne and Ning Lin
7.1 Introduction
7.2 Mechanical Properties of Polysaccharide Nanocrystals
7.2.1 Intrinsic Mechanical Properties of Polysaccharide
Nanocrystals
7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films
7.3 Dispersion of Polysaccharide Nanocrystals
7.3.1 Observation of Polysaccharide Nanocrystals in Matrix
7.3.2 hree-Dimensional Network of Polysaccharide Nanocrystals
7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based
Materials
7.4.1 Inuence of the Morphology and Dimensions of the
Nanocrystals
7.4.2 Inuence of the Processing Method
7.5 Polysaccharide NanocrystalMatrix Interfacial Interactions
7.6 hermal Properties of Polysaccharide Nanocrystal-Based
Materials
7.6.1 hermal Properties of Polysaccharide Nanocrystals
7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based
Nanocomposites
7.6.3 MeltingCrystallization Temperature of Polysaccharide
Nanocrystal-Based Nanocomposites
7.6.4 hermal Stability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.7 Barrier Properties of Polysaccharide Nanocrystal-Based
Materials
7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films
7.7.2 Swelling and Sorption Properties of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.3 Water Vapor Transfer and Permeability of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.8 Concluding Remarks
List of Abbreviations
References
Index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.