登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』商业数据流挖掘模型、方法及应用

書城自編碼: 2842715
分類:簡體書→大陸圖書→計算機/網絡數據庫
作者: 琚春华
國際書號(ISBN): 9787121289651
出版社: 电子工业出版社
出版日期: 2016-06-01
版次: 1 印次: 1
頁數/字數: 207/
書度/開本: 16开 釘裝: 平塑

售價:HK$ 58.5

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
加加美高浩的手部绘画技法 II
《 加加美高浩的手部绘画技法 II 》

售價:HK$ 89.4
卡特里娜(“同一颗星球”丛书)
《 卡特里娜(“同一颗星球”丛书) 》

售價:HK$ 87.4
伟大民族:从路易十五到拿破仑的法国史(方尖碑)
《 伟大民族:从路易十五到拿破仑的法国史(方尖碑) 》

售價:HK$ 188.2
古今“书画同源”论辨——中国书法与中国绘画的关系问题兼中国画笔墨研究
《 古今“书画同源”论辨——中国书法与中国绘画的关系问题兼中国画笔墨研究 》

售價:HK$ 132.2
《日本文学史序说》讲演录
《 《日本文学史序说》讲演录 》

售價:HK$ 72.8
无尽的海洋:美国海事探险与大众文化(1815—1860)
《 无尽的海洋:美国海事探险与大众文化(1815—1860) 》

售價:HK$ 99.7
治盗之道:清代盗律的古今之辨
《 治盗之道:清代盗律的古今之辨 》

售價:HK$ 122.1
甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册)
《 甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册) 》

售價:HK$ 210.6

 

內容簡介:
本书是商业数据流挖掘方面的一本学术专著,包括商业数据流数据管理模型、概念漂移模型、商业数据流关联规则、分类、聚类方法,以及在银行、网购等领域的应用等内容,从模型、方法及应用三个角度对面向商业数据流挖掘进行了系统论述。本书适合作为与数据挖掘和商业数据分析有关的学科如计算机技术、软件工程、电子商务等的本科和研究生的教材,也可供相关领域的专业人员参考。
關於作者:
琚春华 浙江工商大学信息学院院长,教授博士博士生导师。琚春华Ju ChunHua,男,1962年7月生,浙江常山县人,中共党员,浙江工商大学科技处处长,教授、博士,浙江工商大学工商管理学院博士生导师。浙江省“151人才工程”第一层次人选,国务院特殊津贴获得者,中国科学技术情报学会第七届理事会理事、常务理事,全国新世纪优秀人才支持计划学术带头人,浙江省重点学科(管理科学与工程)带头人,浙江省电子商务与物流优化创新团队负责人,高等学校博士学科点专项科研基金获得者,第十一届“挑战杯”全国大学生学术科技作品竞赛优秀指导教师。
目錄
目录
第1章绪论
1.1背景概述
1.1.1数据挖掘
1.1.2数据流挖掘
1.2商业数据流挖掘主要研究概况
1.2.1国外研究现状
1.2.2国内研究现状
1.3商业数据流挖掘的基本概念
1.3.1商业数据流的基本定义
1.3.2商业数据流挖掘的基本流程
1.3.3商业数据流挖掘的主要模型和方法
1.4商业数据流挖掘的典型应用
1.4.1分布式零售数据流挖掘应用
1.4.2网购数据流挖掘应用
1.5本书的主要内容和结构
参考文献第2章商业数据流管理模型
2.1商业数据流特点
2.2商业数据流管理模型
2.2.1商业数据流描述模型
2.2.2商业数据流分层管理模型
2.3商业数据流预处理模型
2.3.1商业数据流降维模型
2.3.2商业数据流噪声处理模型
2.4本章小结
参考文献第3章商业数据流概念漂移模型
3.1商业数据流概念漂移描述模型
3.1.1商业数据流中的概念漂移概述
3.1.2基于粒计算的商业数据流概念模型
3.2商业数据流概念漂移特征提取模型
3.2.1商业数据流概念漂移特征发现模型
3.2.2商业数据流概念漂移特征抽取模型
3.3商业数据流概念漂移检测模型
3.3.1基于概念格的数据流漂移检测模型
3.3.2基于HSMM的用户兴趣漂移检测模型
3.3.3融入簇强度的数据流漂移检测模型
3.4本章小结
参考文献第4章面向商业数据流的关联规则方法
4.1Web数据流最大频繁项集挖掘算法
4.1.1AMFI算法相关定义
4.1.2算法描述
4.1.3算法小结
4.2基于时序轮盘模型的数据流频繁模式挖掘算法
4.2.1时序轮盘TTLC算法
4.2.2MFSHT算法
4.2.3实验结果及分析
4.2.4算法小结
4.3分布式关联规则同步算法和异步算法
4.3.1网状分布式环境下同步算法NDMA
4.3.2星形分布式环境下异步算法SDMA
4.3.3算法小结
4.4分布式无冗余数据流关联规则异步算法
4.4.1相关概念和定理
4.4.2算法描述与分析
4.4.3实验结果及分析
4.4.4算法小结
4.5本章小结
参考文献第5章面向商业数据流的分类方法
5.1基于模糊积分融合的数据流分类挖掘算法
5.1.1模糊测度与模糊积分理论
5.1.2基于Choquet模糊积分融合的多模糊ID3数据流分类算法
5.1.3算法描述及分析
5.1.4算法小结
5.2基于增量存储树的集成贝叶斯分类数据流挖掘算法
5.2.1集成贝叶斯分类器构建
5.2.2构建CMCDST算法模型
5.2.3实验结果及分析
5.2.4算法小结
5.3基于相关度的数据流关联分类算法
5.3.1基于相关度关联分类算法的设计思想
5.3.2基于相关度的关联分类算法
5.3.3实验结果及分析
5.3.4算法小结
5.4基于情景特征的数据流前馈动态集成分类算法
5.4.1问题描述
5.4.2基于情景特征的前馈动态集成分类思想
5.4.3实验结果及分析
5.4.4算法小结
5.5基于信息熵差异性度量的数据流增量集成分类算法
5.5.1问题描述
5.5.2基于信息熵差异性度量的增量集成分类算法
5.5.3算法小结
5.6基于MAPREDUCE技术的数据流并行集成分类算法
5.6.1问题描述
5.6.2相关理论研究
5.6.3基于云计算的并行集成分类器
5.6.4实验结果及分析
5.6.5算法小结
5.7本章小结
参考文献第6章面向商业数据流的聚类方法
6.1基于密度的数据流聚类算法
6.1.1问题描述
6.1.2数据流管理模型及算法架构
6.1.3主成分和密度融合的数据流聚类模型
6.1.4PDStream算法设计
6.1.5实验结果及分析
6.1.6算法小结
6.2基于小波网络的多维时间序列耦合特征聚类算法
6.2.1相关工作
6.2.2基于小波网络的数据压缩
6.2.3多维时间序列耦合特征提取
6.2.4聚类算法描述
6.2.5实验结果及分析
6.2.6算法小结
6.3并行Web数据流聚类算法
6.3.1研究进展及相关模型
6.3.2JPStream算法描述
6.3.3实验结果及分析
6.3.4算法小结
6.4融入簇存在强度的数据流聚类方法
6.4.1融入不确定性的Web用户分析模型
6.4.2簇存在强度
6.4.3融入簇存在强度的数据流聚类算法
6.4.4实验结果及分析
6.4.5算法小结
6.5本章小结
参考文献第7章商业数据流挖掘应用——分布式零售数据
7.1实验数据来源与实验环境
7.1.1实验数据来源
7.1.2挖掘实验环境
7.2基于多支持向量机的分布式客户流失预测应用
7.2.1单站点客户流失预测分析
7.2.2多站点客户流失预测分析
7.2.3结果分析
7.3基于分布式关联分类的连锁零售业客户细分应用
7.3.1数据准备
7.3.2模型的训练与测试
7.3.3结果分析
7.4本章小结
参考文献第8章商业数据流挖掘应用——网购数据
8.1实验数据来源与实验环境
8.1.1实验数据来源
8.1.2挖掘实验环境
8.2基于行为特征分析的用户聚类算法的应用分析
8.2.1聚类步骤
8.2.2聚类评估方法
8.2.3用户聚类结果与分析
8.3概念漂移约束驱动的关联规则挖掘算法的应用分析
8.3.1概念漂移约束驱动的关联规则挖掘
8.3.2情境强度约束的模式挖掘与推荐
8.3.3基于推荐系统的算法评测与分析
8.4用户兴趣挖掘模型的应用分析
8.4.1用户情境本体模型构建
8.4.2用户兴趣特征提取实验分析
8.4.3用户兴趣漂移检测实验
8.5本章小结
参考文献第9章总结与展望
9.1本书总结
9.2未来展望

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.