Part I Invited Plenary SpeechesClean Coal TechnologyFor the Future Utilization. . . . . . . . . . . . . . . . . . . . . . . . . 3Keiji MakinoRegional Distribution of Renewable Energy and the Abundanceof Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Filip Johnsson, and Jan Kj?rstadPart II Basic Coal Quality and CombustionPhysicochemical Properties and Pyrolysis Characteristics of IndonesianLignite Upgraded by Organic Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Liu Meng, Xu Chao, Li Jian, and Duan YufengCombustion Behavior of Low-Rank Coal Upgraded by DegradativeSolvent Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Zong Zhang, Yi Xue, Xianqing Zhu, Xian Li, Hong Yao,and Kouichi MiuraA Quantitative Method for Determining the Primary Air Ratioin Coal-Fired Power Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Bin Zhang, Fang Yue, Yang Liu, and Peifang FuPhysicochemical Analysis of Hydrothermal Upgraded MunicipalSewage Sludge with Low-Rank Lignite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Li Jian, Liu Meng, Duan Yufeng, and Xu ChaoExperimental Study on Ash Melting Behavior of Xinjiang High-AlkaliCoal Blended with Low-Alkali Coal During Coal Combustion . . . . . . . . . . . . . . . . 53Xiang Zhang, Xiaojiang Wu, Xueyuan Xu, Jianwen Zhang, Kai Yan,Baiqian Dai, Jian Zhang, and Lian ZhangMolecular Dynamics Simulations Study of Brown Coal PyrolysisUsing ReaxFF Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Di-kun Hong, Hong-kuan Shu, Xin Guo, and Chu-guang ZhengExperimental and Numerical Analyses on Ignition and BurnoutCharacteristic of Low-Rank Lignite and Semi-Char Blends . . . . . . . . . . . . . . . . . . 69Ye Yuan, Shuiqing Li, and Qiang YaoMineral Matters in High-AAEM Zhundong CoalIn Comparisonwith High-calcium PRB Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Yanmei Yang, Hai Zhang, Junfu Lu, and Yuxin WuThe Layered Structure of Ash Deposition in a 350 MW PC FurnaceBurning High SodiumCalcium Lignite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Tao Yang, Xuebin Wang, Wenguang Li, Bo Wei, Yibin Wang,and Houzhang TaniiiMechanism Investigation on the Sulfation of Condensed Sodium Chlorideat 5231023 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Zhongfa Hu, Lan Zhang, Qinglian Sang, Xuebin Wang, Zhao Wang,and Houzhang TanMechanisms of Inorganic Element Transfer During Zhundong Coal Combustionin Drop Tube Furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Bo Wei, Xuebin Wang, Xiaobing Qi, Yibin Wang, Zhongfa Hu,and Houzhang TanA Mechanism Study on the Decomposition of Sulfate in Zhundong Coalwith High Sulfur Content in Coal Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Xuebin Wang, Hongying Wu, Shuanghui Deng, Lan Zhang, Bo Wei,and Houzhang TanLarge Eddy Simulation of the Sandia Flame E and F Using DynamicSecond-Order Moment Closure DSMC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Jianshan Yang, Kun Luo, Yun Bai, and JianRen FanSpace Program SJ-10 on Coal Combustion Research at Microgravity . . . . . . . . . . 113Chen Zuo, Bing Liu, Jialun Chen, Pei Zhang, Yu Qiao, Minghuo Xu,Qing Liu, and Hai ZhangFormation of Ash Aerosols and Ash Deposits of Coal Blends . . . . . . . . . . . . . . . . . 121Zhonghua Zhan, Sida Tian, Andrew R. Fry, and Jost O.L. WendtEffect of Ashing Temperature on the Physicochemical Propertiesof Zhundong Lignite Ashes Prepared in a Muffle Furnace . . . . . . . . . . . . . . . . . . . 133Jianbo Li, Mingming Zhu, Zhezi Zhang, and Dongke ZhangUpgrading of Lignite in a Tunnel-Type Microwave Oven . . . . . . . . . . . . . . . . . . . . 139Fan Zhou, Jun Cheng, Jianzhong Liu, Junhu Zhou, and Kefa CenPart III Pulverized Coal CombustionReal-Time Temperature Measurement Research on High-TemperatureGas of Large-Scale Power Plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Zhiwei Wang, Hongrui Li, Yifeng Wang, Baohua Du, and Dapeng WangNumerical Study of MILD Combustion for Pulverized Coal in O2N2,O2CO2, and O2H2O Atmospheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Yaojie Tu, Fanhai Kong, Kai Su, Hao Liu, and Chuguang ZhengCo-combustion Technology of Coal and Wood Waste . . . . . . . . . . . . . . . . . . . . . . . 165E.B. Zhukov, E.M. Puzirev, and K.V. MenyaevExperimental Study of Coal MILD Combustion at a Pilot-Scale Furnace . . . . . . . 173Zhihui Mao, Liqi Zhang, Xinyang Zhu, and Chuguang ZhengImproving the Efficiency of Fuel Combustion in Boilers with Windmill Fans . . . . 183Andrey Batukhtin, Sergey Ivanov, Sergey Batukhtin, and Maksim BassCharacteristics of Submicron Particulate Matters Formedin the Early Stage of Oxy-Fuel Coal Combustion. . . . . . . . . . . . . . . . . . . . . . . . . . . 189Qi Gao, Shuiqing Li, Ye Yuan, and Qiang YaoAirflow and Combustion Characteristics and NOx Formationof the Low-Volatile Coal-Fired Utility Boiler at Different Loads . . . . . . . . . . . . . . . 197Song Li, Zhichao Chen, Bingkun Jiang, Guangkui Liu, Zhengqi Li,Xiqian Zhang, and Qunyi Zhuiv ContentsMeasurements on Heat Flux Distribution in a SupercriticalArch-Fired Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Dalong Zhang, Hang Shi, Chenwei Meng, Yuxin Wu, Hai Zhang, Wu Zhou,and Shenming RanCFD Modeling and Field Testing of a 600-MW Wall-Fired Boiler BurningLow-Volatile Bituminous Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213Shijian Luan, Zhanhua Ma, Heyang Wang, Yanjun Zhang, and Pisi LuResearch on Flue Gas Recirculation Coupled Air Staging in an IndustrialPulverized Coal Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221Gao-liang Li, Fang Niu, Yan-yan Gong, and Nai-ji WangArsenic Emissions and Speciations in High-temperature Treatmentof a Typical High Arsenic Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Chong Tian, Junying Zhang, Rajender Gupta, Yongchun Zhao,and Chuguang ZhengTG-MS Study on CoalChar Combustion by Equivalent CharacteristicSpectrum Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Zhiqiang Gong, Hongde Xia, Zhicheng Liu, and Qinggang LuNumerical Simulation of Combustion Characteristics and Heat FluxDistribution in a 600-MW Arch-Fired Boiler with Different PrimaryAir Injection Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241Zhang Dalong, Li Zhouhang, Zhang Hai, Wu Yuxin, Lu Junfu,Zhang Man, Zhou Wu, and Ran ShenmingPart IV Fluidized Bed CombustionAnalysis of Coarse and Fine Particles Exchange in a Parallel Double-VelocityDouble-Fluidized Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251Q.H. Wang, D.C. Song, Q. Guo, Y. Yang, W. Shuang, and X.F. LuNumerical Simulation for a CFB Boilers Cyclone Separatorwith Structure Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257Q. Guo, Q.H. Wang, X.F. Lu, P.Y. Ji, and Y.H. KangExperimental Study on Combustion Characteristics of ExtremelyLow Calorific Solid Wastes in a Fluidized Bed Combustor . . . . . . . . . . . . . . . . . . . 265Y. Yang, X.F. Lu, L. Mei, Q.H. Wang, Y. Hong, and D.C. SongResearch and Application of the Material Balance Online Supervisionfor CFB Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Wang Zhiwei, Wang Yifeng, and Chen XincanThe Operation of the 600-MW Super-Critical CFB Boiler Unit . . . . . . . . . . . . . . . 283Shengwei Xin, Xinghua Li, Wengqing Zhang, and Jun TangCFDDEM Modeling of O2CO2 Char Combustion in a Fluidized Bed . . . . . . . . . 287Yaming Zhuang, Xiaoping Chen, Daoyin Liu, and Changsheng BuCombustion Characteristics in 2 MWe-Class CFBC KIER Power Plant . . . . . . . . 295Jusoo Hyun, and Yuntae HwangEffects of Cyclone Structures on the Pressure Drop Across Different Sectionsin Cyclone Under GasSolid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Y. Huang, X. Mo, H. Yang, M. Zhang, and J. LvFlow Properties of Coal and Biomass on Recurrence Plot Method . . . . . . . . . . . . . 309Feihong Guo, Zhaoping Zhong, Heng Wang, Zeyu Xue, and Jin ZhangContents v3-Dimensional Particle Tracking in a Fluid Dynamically Downscaled FluidizedBed Using Magnetoresistive Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317Erik Sette, Anna K?hler, David Pallars, and Filip JohnssonPart V Special for CO2 Issues-CCSDynamic Simulation and Control Design for Pulverized-Coal-FiredOxy-Combustion Power Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325Bo Jin, Haibo Zhao, and Chuguang ZhengAnalysis of Sensitivity and Optimization Potential for Oxy-Fuel Plant System. . . . 335Kai Yan, Xiaojiang Wu, Lian Zhang, Andrew Hoadley, Xueyuan Xu,and Jianwen ZhangHigh-Performance of SATS-Derived CaOTiO2Al2O3 Sorbentfor CO2 Capture in Batch Fluidized Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Weiwei Peng, Zuwei Xu, and Haibo ZhaoCCSEM Analysis of Ash from Oxyfuel Combustion of Zhundong Coal . . . . . . . . . 347Tai Zhang, Zhaohui Liu, Xiaohong Huang, Qing Sun, Chao Liu,and Chuguang ZhengApplication of Carbon Capture to CO2 Emissions of Steel Plants. . . . . . . . . . . . . . 353K. Iwasa, M. Hodotsuka, X. Zhao, and K. SuzukiDynamic Modelling and Analysis of Supercritical Coal-Fired Power PlantIntegrated with Post-combustion CO2 Capture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359Akeem K. Olaleye, Eni Oko, Meihong Wang, and Gregg KelsallCO2 Capture Using Hollow Fiber Membrane Under Wet Ammonia-BasedDesulfurization Flue Gas Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365Lin Zhang, Bin Hu, Hao Wu, Xia Wang, Rui Liu, and Linjun YangA Low-Cost Chemical Absorption Scheme for 500,000 ty CO2Capture Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373Hui He, Mengxiang Fang, Wei Yu, Qunyang Xiang, Tao Wang,and Zhongyang LuoPart VI Emission Characteristics and ControlsKinetics of Selenium and Cadmium Vaporization During Coal Combustionin a Fluidized Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381Fenghua Shen, Jing Liu, and Zhen ZhangFlue Gas Recirculation Impact on NOx Formation in TP-101-Type Boilerat Estonian Power Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387Vladimir Sidorkin, and Andrey TugovAbsorption of Sulfur Dioxide in a Transversal Flow Hollow Fiber MembraneContactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393Hesheng Yu, Qinghai Li, Jesse Th, and Zhongchao TanRemoval of Fine Particles from Coal Combustion by HeterogeneousCondensational Enlargement in Wet Flue Gas Desulfurization . . . . . . . . . . . . . . . . 401Wu Hao, and Yang LinjunCentral Mode Particulate Matter Control by Enhanced Liquid FormationUnder the Condition of Blended Coal Combustion. . . . . . . . . . . . . . . . . . . . . . . . . . 409Pingan Zhang, Guangqian Luo, Dunxi Yu, and Hong Yaovi ContentsThe Evolution of Bimodal Size Distribution with Spatially InhomogeneousParticle Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417M.L. Xie, T.T. Kong, and Q. HeNumerical Solution of a Modified Moment Model for Particle PopulationBalance Equation in the Continuum-Slip Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . 423T.T. Kong, Q. He, and M.L. XieNon-Thermal Plasma-induced Flue Gas Cleaning: Fundamentalsand Industrial Demonstration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429S.R. Li, S. Wang, P. Han, L.H. Wang, and K.P. YanTechnical Progress for PM Emission Control from Coal-Fired Boilers. . . . . . . . . . 435C.Y. XiaoSimulation Study on the Demercuration Performance of Wet Flue GasDesulfurization System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439Han Kunkun, Chi Guozhen, and Ni JianjunStudy on Fuel-N Conversion During Rapid Pyrolysis of Anthracitein CO2 at High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445Qiongliang Zha, Jing Zhao, Changan Wang, Yinhe Liu, and Defu CheAnalysis of Influence of Air Distribution on the Reduction of NOx Emissionsin a 300-MWe Tangentially Lean Coal-Fired Boiler. . . . . . . . . . . . . . . . . . . . . . . . . 453Peng Zhao, Lushi Sun, Ben Wang, Jie Yu, Jun Xiang, Song Hu, Sheng Su,and Yi WangExperimental Study on the Stability of the Mercuric Complexesin Wet Flue Gas Desulfurization Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467Yu Huang, Peng-shuai Han, Xin Guo, and Chu-guang ZhengEffect of CO2 on the Removal of NO Over Viscose-Based ActivatedCarbon Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475Zean Wang, Deli Zhu, Fanhai Kong, Yuhang Zhong, Hao Liu,and Jianrong QiuThe Effect of Gas Temperature on Dust Resistivity and Removal Efficiencyin an Extra Cold-Side Electrostatic Precipitator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483X.H. Zhang, S.Q. Li, G.L. Xiong, W. Huang, R.S. Luo, and J. GuoAirflow and Combustion Characteristics and NOx Formationof the Low-Volatile Coal-Fired Utility Boiler at Different Loads . . . . . . . . . . . . . . . 489Song Li, Zhichao Chen, Bingkun Jiang, Guangkui Liu,Zhengqi Li, Xiqian Zhang, and Qunyi ZhuAnalysis of Iron-Bearing Phase Components in Shenhua Coaland Their Combustion Transformation Products by Acid Separationand Mossbauer Spectroscopy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497Sida Tian, Yongxu Fang, Zhizhong Kang, and Yuqun ZhuoEffects of Flue Gas Cooler on the Reduction of Gypsum Rainin Coal-Fired Power Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503G.D. Li, Z.X. Sun, H.Q. Liu, H. Guo, and Z. YangExperimental Investigation on Slagging Grade of Zhundong CoalBased on 10 MW Combustion Test Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509Wang Fengjun, Liu Hengyu, Zuo Guohua, and Guan JingyuFine Particle Characteristics from LimestoneGypsumDesulfurization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515Pan Danping, Huang Rongting, and Yang LinjunContents viiStudy on Mechanisms of Aerosol Formation in Wet Ammonia-BasedDesulfurization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521Liu Yaming, Huang Rongting, Pan Danping, Xu Qisheng, and Yang LinjunPart VII Industrial Application and Coal UseA Simplified Equilibrium Model for Simulating Entrained Flow Gasifiers. . . . . . . 531Zhen Liu, Jiansheng Zhang, and Fenghua ZhangNumerical Study of the Multiphase GasSolid Flowby a TFM-DEM Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541Q.G. Wang, W.D. Yin, J.F. Lu, and H.R. YangInvestigation of Coal Reactivity Effects on a 1000-MWTangential Coal-Firing Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547Meng Chenwei, Wu Yuxin, Zhang Hai, Zhang Dalong, and Lv JunfuDerivation of Low-temperature Coal Oxidation Kinetics from Non-steadyHeat Generation Rate Measured by Isothermal Calorimetry. . . . . . . . . . . . . . . . . . 553Bo Li, Hui Zhang, and Changdong ShengDetection Technique of SO3 Content in Coal-Fired Flue Gasand Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563Ding Yang, and Fang ZhengMixing Enhancement of Ammonia and Flue Gas in the SCR DeNOx System . . . . 567Yang ding, Su Yinbiao, Wen Qingyun, Zheng Hao, and Ye XinglianModeling of Cold Flow Field in an Entrained-Flow Gasifierwith Single or Multiple Injectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575Z.Y. Feng, Z. Liu, X.H. Fang, F.H. Zhang, B.Z. Peng, and Z.J. GongNumerical Simulation of an Entrained Flow Gasifier by an Eulerian Model . . . . . 585H.P. Xu, H.B. Zhao, and C.G. ZhengCO2 AbsorptionDesorption Enhanced by Nanoparticles in Post-combustionCO2 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591W. Yu, T. Wang, M.X. Fang, H. Hei, and Z.Y. LuoDevelopment of Reduced Order Model for the HNCERI Gasifier. . . . . . . . . . . . . . 597Bo Zhang, Zhuyin Ren, and Shaoping ShiThe Promotion Mechanism of SiliconAluminum on the Decompositionof Sulfates in Biomass Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603Lan Zhang, Zhongfa Hu, Juan Chen, Xuebin Wang, Bo Wei,and Houzhang TanCold-State Model Numerical Simulation of Coal Water Slurry Gasifier. . . . . . . . . 609Junjie Zhou, Quanguo Fang, and Tao DongDevelopment of High-Efficiency Coal Gasification Technology . . . . . . . . . . . . . . . . 617D. Ariyoshi, S. Takeda, K. Kosuge, M. Mizuno, and K. KatoDynamic Modelling, Validation and Analysis of Coal-fired SupercriticalOnce-through Boiler-Turbine-Generator Systems Under StringentUK Grid Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621Akeem K. Olaleye, Meihong Wang, Chuanlong Xu, and Gregg KelsallThe Influence of Temperature and Residence Time on Tire Thermolysisin Subcritical and Supercritical Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629Fuxin Li, Aihong Meng, Qinghai Li, and Yanguo Zhangviii ContentsTechnical Characteristic of Coal-Fired Boiler Under the Rule of EnergyConservation and the Reduction of Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635Fengjun Wang, Weiguo Weng, Ying Huang, and Shijian LuanThe High Efficiency and Clean Combustion of Coal Based on GeneralizedRegeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639Weizhong Feng
內容試閱:
The International Symposium on Coal Combustion ISCC was originally conceived byTsinghua University in 1987 and now becomes one of the most effective forums every fouryear, aiming at clean coal energy, global warming, low-carbon technology, etc.The 8th Symposium, hosted by the Institute of Thermal Engineering of TsinghuaUniversity, was successfully held at Beijing, China, in July 1922, 2015. The symposiumcovered the latest results of research and development R&D on the clean coal combustion,conversion, and utilization from both academia and industry.In the 8th ISCC, the colloquium chair system has been started to improve the scientific andtechnical quality of the conference. The renewed International Advisory Committee consists of52 well-known scholars and experts from 14 countries 25 Chinese and 27 foreigners. Afterreview and selection, 196 technical papers were divided into 5 keynotes, 121 oral presentations,and 70 posters were accepted. Among them, about 20 top rank fundamental papers werefurther submitted to a special issue of FUEL, one of the leading journals in this field. Morethan 200 delegates attended the symposium from 13 countries, including USA, Germany, UK,Canada, Japan, Korea, Australia, Russia, Sweden, and Poland . Compared to the previoussymposiums, more industrial colleagues were present with high interests. Twelve domesticand foreign research institutions, universities, and foundations as well as enterprises assponsors or co-sponsors provided their supports to the symposium.The proceedings of the 8th ISCC collect 2 invited plenary speeches partially in abstractsand 93 technical papers presented orally and in poster, and are divided into the following partsincluding the number of papers. Basic Coal Quality and Combustion17 Pulverized Coal Combustion15 Fluidized Bed Combustion12 Special for CO2 Issues-CCS8 Emission Characteristics and Controls22 Industrial Application and Coal Use19The proceedings can serve as a platform for scientists, engineers, graduate students, andequipment manufactures and operators, as well as technical managers to exchange theiropinions and ideas in the field of science and technology of coal combustion, gasification, andpollutants and CO2 emissions.We would like to acknowledge our members of the