新書推薦:
《
失衡与重塑——百年变局下的中国与世界经济
》
售價:HK$
132.2
《
不被定义的年龄:积极年龄观让我们更快乐、健康、长寿
》
售價:HK$
77.3
《
南方谈话:邓小平在1992
》
售價:HK$
80.6
《
纷纭万端 : 近代中国的思想与社会
》
售價:HK$
109.8
《
中国古代文体形态研究(第四版)(中华当代学术著作辑要)
》
售價:HK$
168.0
《
朋党之争与北宋政治·大学问
》
售價:HK$
99.7
《
甲骨文丛书·波斯的中古时代(1040-1797年)
》
售價:HK$
88.5
《
以爱为名的支配
》
售價:HK$
62.7
|
編輯推薦: |
本书涉及数据科学家感兴趣的核心话题,教会读者从各种各样的数据源中提取数据,并运用现有的公开可用的R函数和R功能包来处理这些数据。在很多情况下,处理结果能够以图形的方式显示,并获得更直观的理解。读者从中能学到行业内经常使用的主流数据分析技术。 你可以从这本书中学到: ·开发、执行和修改R语言脚本; ·发现、安装和使用第三方的R语言包; ·规划你的数据,以获得好的结果; ·将结果以图形化的方式展示,包括3D可视化; ·执行你随时会用到的统计分析; ·权衡不同解决方案的优缺点; ·尝试R语言的不同功能来微调结果; ·通过R语言的实际例子来学习数据科学; ·利用R语言来探索数据挖掘、数据分析、数据可视化以及机器学习等概念。
|
內容簡介: |
本书讲述的是R语言在数据科学中的应用,目标读者是从事不同行业的数据分析师、数据挖掘工程师、机器学习工程师、自然语言处理工程师、数据科学家,以及从事大数据和人工智能领域的工作者、学生、老师等。 本书的优点在于其通俗易懂、容易上手,每一个实例都有现成的数据和源代码,读者不仅能理解整个案例的来龙去脉,还可以直接编译本书提供的所有源代码,从而了解怎么从实际问题转变成可实现的代码,感受R语言的魅力,让数据产生价值。这种学习和实践相结合的方式非常适合初学者和有一定经验的数据分析师。 本书的内容涵盖了基于数据挖掘的常用模型,包括分类、聚类、关联分析、预测、异常检测等,还包括机器学习的常用算法和自然语言处理、数据可视化等内容。本书内容全面,做到了易读、易用、易理解、易实现、易上手,是不可多得的R语言书籍。
|
關於作者: |
作者简介: Dan Toomey具有20多年开发应用程序方面的经验,曾在多个行业及公司担任不同的职位,包括投稿人、副总裁及首席技术官。近10年,Dan一直在美国马萨诸塞州东部地区的公司工作。Dan以Dan Toomey软件公司的名义,成为这些领域的开发承包商。 译者简介: 刘丽君,韩国国立全北大学博士,加拿大圣西维尔大学博士后,一直从事物联网、工业大数据等方面的数据分析、市场分析等工作,目前任武汉泰迪智慧科技有限公司CEO,对数据敏感,并对数据怎么转变成价值、数据与商业的关系有独到见解。 李成华,数据挖掘与机器学习方向博士,约克大学博士后,麻省理工学院访问科学家,曾任海信集团数据挖掘专家,京东深度神经网络实验室首席科学家,长期从事数据挖掘、机器学习、深度学习和自然语言处理等方面的研究和工作,擅长自动问答以及基于自然语言的人机交互。 卢青峰,硕士毕业于美国威斯康辛州立大学,毕业后从事数据分析、挖掘等相关工作至今。曾先后在敦煌网、百度、京东等行业领先的公司从事数据挖掘、用户行为分析、推荐等工作。
|
目錄:
|
目录
第1章 模式的数据挖掘 1
1.1 聚类分析 2
1.1.1 K-means聚类 3
1.1.2 K-medoids聚类 7
1.1.3 分层聚类 12
1.1.4 期望最大化 15
1.1.5 密度估计 21
1.2 异常检测 24
1.2.1 显示异常值 25
1.2.2 计算异常 28
1.3 关联规则 30
1.4 问题 33
1.5 总结 34
第2章 序列的数据挖掘 35
2.1 模式 35
2.1.1 Eclat 36
2.1.2 arulesNBMiner 40
2.1.3 Apriori 43
2.1.4 用TraMineR确定序列 47
2.1.5 序列相似点 54
2.2 问题 57
2.3 总结 57
第3章 文本挖掘 59
3.1 功能包 60
3.1.1 文本处理 60
3.1.2 文本集群 69
3.2 问题 80
3.3 总结 80
第4章 数据分析——回归分析 81
4.1 功能包 81
4.1.1 简单回归 81
4.1.2 多次回归 88
4.1.3 多变量回归分析 94
4.1.4 稳健回归 100
4.2 问题 106
4.3 总结 106
第5章 数据分析——相关性 107
5.1 功能包 107
5.1.1 基本相关性 108
5.1.2 可视化相关性 112
5.1.3 协方差 114
5.1.4 皮尔森相关性 117
5.1.5 多分格相关性 118
5.1.6 四分相关性 122
5.1.7 异构相关矩阵 126
5.1.8 部分相关性 128
5.2 问题 129
5.3 总结 129
第6章 数据分析——聚类 131
6.1 功能包 131
6.2 K-means聚类 132
6.2.1 示例 132
6.2.2 Medoids集群 140
6.2.3 cascadeKM函数 142
6.2.4 基于贝叶斯定理信息选取集群 144
6.2.5 仿射传播聚类 146
6.2.6 用于估测集群数量的间隙统计量 149
6.2.7 分级聚类 151
6.3 问题 153
6.4 总结 154
第7章 数据可视化——R图形 155
7.1 功能包 155
7.1.1 交互式图形 156
7.1.2 latticist功能包 160
7.1.3 ggplot2功能包 169
7.2 问题 180
7.3 总结 181
第8章 数据可视化——绘图 183
8.1 功能包 183
8.2 散点图 183
8.2.1 回归线 187
8.2.2 lowess线条 188
8.2.3 scatterplot函数 189
8.2.4 Scatterplot矩阵 192
8.2.5 密度散点图 197
8.3 直方图和条形图 200
8.3.1 条形图 200
8.3.2 直方图 203
8.3.3 ggplot2 203
8.3.4 词云 204
8.4 问题 206
8.5 总结 206
第9章 数据可视化——三维 207
9.1 功能包 207
9.2 生成三维图形 208
9.2.1 Lattice Cloud——三维散点图 212
9.2.2 scatterplot3d 215
9.2.3 scatter3d 216
9.2.4 cloud3d 218
9.2.5 RgoogleMaps 220
9.2.6 vrmlgenbar3D 221
9.2.7 大数据 223
9.2.8 研究方向 228
9.3 问题 234
9.4 总结 234
第10章 机器学习实战 235
10.1 功能包 235
10.2 数据集 236
10.2.1 数据划分 240
10.2.2 模型 241
10.2.3 train方法 254
10.3 问题 264
10.4 总结 264
第11章 用机器学习预测事件 265
11.1 自动预测功能包 265
11.1.1 时间序列 266
11.1.2 SMA函数 272
11.1.3 分解函数 273
11.1.4 指数平滑法 274
11.1.5 预测 277
11.1.6 霍尔特指数平滑法 281
11.2 问题 293
11.3 总结 293
第12章 监督学习和无监督学习 295
12.1 功能包 296
12.1.1 监督学习 296
12.1.2 无监督学习 316
12.2 问题 327
12.3 总结 327
|
|