新書推薦:
《
中国常见植物野外识别手册:青海册
》
售價:HK$
76.2
《
三星堆对话古遗址(从三星堆出发,横跨黄河流域,长江流域,对话11处古遗址,探源多元一体的中华文明)
》
售價:HK$
87.4
《
迷人的化学(迷人的科学丛书)
》
售價:HK$
143.4
《
宋代冠服图志(详尽展示宋代各类冠服 精美插图 考据严谨 细节丰富)
》
售價:HK$
87.4
《
形似神异:什么是中日传统政治文化的结构性差异
》
售價:HK$
55.8
《
养育不好惹的小孩
》
售價:HK$
77.3
《
加加美高浩的手部绘画技法 II
》
售價:HK$
89.4
《
卡特里娜(“同一颗星球”丛书)
》
售價:HK$
87.4
|
內容簡介: |
本书共十二章,第1-4章重在介绍移动广告营销数据分析理论与案例分析,包括广告数据分析的基本概念、内容和意义,广告数据分析相关理论知识及常用分析方法,移动广告营销常见的数据分析案例剖析以及如何做一份让领导满意的数据分析报告;本书第5-6章主要介绍Python软件安装及常用包的主要用法。本书第7-10章主要介绍利用Python实现移动广告营销中常见的机器学习算法,重点掌握常用的模型评价方法,模型原理、实现方法和技巧,其中包括混淆矩阵、AUC、ROC等常用模型评价方法以及线性回归、逻辑回归、决策树、KNN、SVM、神经网络、随机森林、GBDT、XGBoost、Stacking等常用监督学习算法。第11章主要介绍k-means聚类、Lookalike相似用户挖掘等常用无监督学习算法及实现方法。第12章主要介绍移动广告营销常用的特征选择及特征工程方法。读者如果只想了解数据分析相关概念和方法,可以选择性阅读本书前四章内容,后八章偏向数据挖掘算法和编程实践等内容,有兴趣可以深入阅读全书。
|
目錄:
|
前言
第1章 Python安装方法1
1.1 Python介绍1
1.1.1 Python的由来1
1.1.2 Python的特点2
1.2 Anaconda安装2
1.3 PyCharm安装及环境配置9
1.3.1 PyCharm安装9
1.3.2 PyCharm环境配置12
1.4 为什么建议使用Python17
1.5 本章小结18
第2章 认识广告数据分析19
2.1 广告数据概述19
2.1.1 广告数据的特点19
2.1.2 广告数据分析的意义20
2.2 广告数据分布20
2.2.1 伯努利分布20
2.2.2 均匀分布20
2.2.3 二项分布21
2.2.4 正态分布22
2.2.5 泊松分布22
2.2.6 指数分布23
2.3 异常值诊断24
2.3.1 三倍标准差法24
2.3.2 箱形图分析法25
2.4 数据相关性26
2.4.1 Pearson相关系数26
2.4.2 Spearman秩相关系数26
2.5 显著性检验27
2.6 本章小结27
第3章 Python广告数据分析常用工具包29
3.1 数据基础运算工具:NumPy29
3.1.1 常见数据结构30
3.1.2 索引与切片34
3.1.3 数组运算35
3.1.4 矩阵运算39
3.1.5 广播42
3.1.6 其他常用操作43
3.2 数据预处理工具:Pandas46
3.2.1 数据结构概述47
3.2.2 数据加载49
3.2.3 数据拼接53
3.2.4 数据聚合57
3.2.5 数据透视表和交叉表59
3.2.6 广告缺失值处理60
3.3 数据可视化分析工具:Matplotlib63
3.3.1 散点图64
3.3.2 条形图65
3.3.3 折线图66
3.3.4 饼图68
3.3.5 直方图68
3.3.6 箱形图71
3.3.7 组合图72
3.4 本章小结74
第4章 模型常用评价指标75
4.1 回归模型常用评价指标75
4.1.1 R275
4.1.2 调整后的R276
4.2 分类模型常用评价指标77
4.2.1 混淆矩阵77
4.2.2 ROC曲线79
4.2.3 AUC80
4.2.4 KS指标82
4.2.5 提升度85
4.3 本章小结87
第5章 利用Python建立广告分类模型88
5.1 逻辑回归88
5.1.1 逻辑回归原理88
5.1.2 损失函数89
5.1.3 利用Python建立逻辑回归92
5.2 决策树92
5.2.1 决策树概述92
5.2.2 决策树算法93
5.2.3 决策树剪枝处理96
5.2.4 决策树的实现97
5.3 KNN98
5.3.1 距离度量98
5.3.2 KNN算法原理99
5.3.3 KNN算法中K值的选取100
5.3.4 KNN中的一些注意事项100
5.3.5 KNN分类算法实现101
5.4 SVM101
5.4.1 最大间隔超平面101
5.4.2 支持向量103
5.4.3 目标函数104
5.4.4 软间隔最大化106
5.4.5 核函数107
5.4.6 SVM算法的应用109
5.5 神经网络110
5.5.1 结构特点110
5.5.2 训练过程111
5.5.3 激活函数114
5.5.4 损失函数117
5.5.5 神经网络的实现118
5.6 本章小结118
第6章 利用Python建立广告集成模型119
6.1 随机森林119
6.1.1 随机森林的Bagging思想119
6.1.2 随机森林的生成及优点120
6.1.3 袋外误差121
6.1.4 Scikit-learn随机森林类库介绍122
6.1.5 随机森林模型的实现123
6.2 GBDT124
6.2.1 GBDT算法思想124
6.2.2 GBDT算法原理125
6.2.3 Scikit-learn GBDT类库介绍126
6.2.4 使用Scikit-learn类库实现GBDT算法127
6.3 XGBoost128
6.3.1 XGBoost算法思想128
6.3.2 XGBoost算法原理129
6.3.3 XGBoost算法的优点130
6.3.4 XGBoost类库参数131
6.3.5 使用Scikit-learn类库实现XGBoost算法132
6.4 Stacking133
6.4.1 Stacking算法思想134
6.4.2 Stacking算法原理135
6.4.3 Stacking算法实现136
6.5 LR GBDT137
6.5.1 LR GBDT原理138
6.5.2 LR GBDT在广告CTR中的应用139
6.5.3 LR GBDT算法实现140
6.6 FM142
6.6.1 FM的原理142
6.6.2 FM的改进145
6.6.3 FM的Python实现145
6.7 本章小结147
第7章 移动广告常用数据分析方法149
7.1 App下载数据分析149
7.2 游戏行业用户分析151
7.2.1 游戏行业数据分析的作用152
7.2.2 游戏行业的关键数据指标152
7.2.3 游戏用户数据分析方法154
7.3 电商类App用户转化分析156
7.4 工具类App用户分析162
7.5 本地O2O婚纱摄影行业分析163
7.5.1 精准人群定向164
7.5.2 广告创意素材164
7.6 品牌广告与效果广告166
7.7 本章小结168
第8章 广告数据分析报告169
8.1 分析观点明确,逻辑清晰169
8.2 汇报结果,用数据说话170
8.3 分析过程有理有据171
8.4 图表说明171
8.5 数据验证173
8.6 分析建议173
8.7 本章小结174
第9章 广告用户数据挖掘与分析175
9.1 广告用户曝光与响应率分析175
9.2 广告用户曝光与点击率分析178
9.3 广告订单消耗与延时性分析181
9.3.1 Budget Smooth算法184
9.3.2 Budget Smooth的系
|
內容試閱:
|
为何写作本书
近几年来大数据、云计算、人工智能等概念越来越深入人心,相关技术也越来越成熟。技术的进步必然会带来社会的发展,进而推动整个人类社会不断进步。机器学习、深度学习、强化学习等均属于人工智能的细分领域,数据分析又是机器学习的基础,近几年在现实中的应用场景非常多,作用越发明显,因而越来越受到重视。随着5G时代的到来,数据分析、AI方面的人才将更加紧缺,可以说未来很长一段时间数据分析人才都会是招聘市场上的高端人才,备受企业青睐。本书旨在帮助读者快速了解移动广告相关业务知识及具体应用,掌握数据分析相关理论和实践技能。
本书主要特点
本书将深入剖析广告营销行业的常见数据分析案例,并结合当前热门的机器学习和AI算法在广告营销场景的具体应用进行介绍,帮助读者更好地理解广告行业相关业务与技术应用,快速掌握广告营销数据分析所需要的基本知识和技能。书中采用Python作为项目实战编程语言,可帮助读者学习用Python进行数据分析和解决现实问题。
本书读者对象
本书是一本广告营销行业数据分析入门指导书,适合的读者对象主要分为下面几类:
广告营销专业的在校学生;
对广告营销数据分析感兴趣的其他行业从业者;
想转行做广告数据分析的职场白领、开发人员、其他技术人员等。
如何阅读本书
本书共10章,从逻辑上可分为技术理论知识和具体业务应用两部分。其中,第1~2章主要介绍Python的安装和环境配置,带领读者认识广告数据,理解广告数据分析的意义。第3~6章主要介绍Python常用工具包以及模型常用评价指标,并利用Python建立广告分类模型。第7~8章主要介绍广告数据分析典型案例及常用分析方法,教读者如何做一份满意的数据分析报告。第9章主要介绍如何运用数据分析挖掘方法解决广告业务中的实际问题。第10章主要介绍常用的数据预处理及特征选择方法。
总之,前6章以及第10章主要介绍广告数据分析挖掘技术理论和应用,第7~9章则主要介绍广告业务中的具体问题及相应的解决方法,读者可以有选择性地阅读相应内容,有兴趣的话也可以通读全书。
勘误
尽管作者已经尽了自己最大的努力,但书中仍有不尽如人意的地方。若读者发现本书有错误之处,或者针对本书内容有更好的写作建议及意见,可以在微信公众号数据挖掘与AI算法上进行反馈。
致谢
动手写作本书时,我已有孕在身,所以一直顾虑颇多,很担心无法按时交稿。如今书稿付梓在即,心中感慨万千。首先要感谢本书的另一位作者周健的努力和配合,其次要感谢我的家人对我的理解和支持,没有他们,本书是无法顺利完成的。还要特别感谢机械工业出版社华章公司的两位编辑杨福川和李艺,他们的大力支持和辛勤付出才让本书得以顺利出版。
杨游云
|
|