登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』再生水纳米线电穿孔消毒技术研究(英文版)

書城自編碼: 3820953
分類:簡體書→大陸圖書→工業技術一般工业技术
作者: 霍正洋
國際書號(ISBN): 9787302617075
出版社: 清华大学出版社
出版日期: 2022-11-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:HK$ 113.9

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
万千心理·儿童心理治疗中的心智化:临床实践指导
《 万千心理·儿童心理治疗中的心智化:临床实践指导 》

售價:HK$ 87.4
自我囚禁的人:完美主义的心理成因与自我松绑(破除你对完美主义的迷思,尝试打破自我评价过低与焦虑的恶性循环)
《 自我囚禁的人:完美主义的心理成因与自我松绑(破除你对完美主义的迷思,尝试打破自我评价过低与焦虑的恶性循环) 》

售價:HK$ 66.1
周易
《 周易 》

售價:HK$ 44.6
东南亚的传统与发展
《 东南亚的传统与发展 》

售價:HK$ 67.2
乾隆制造
《 乾隆制造 》

售價:HK$ 87.4
资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册)
《 资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册) 》

售價:HK$ 304.4
明代社会变迁时期生活质量研究
《 明代社会变迁时期生活质量研究 》

售價:HK$ 316.2
律令国家与隋唐文明
《 律令国家与隋唐文明 》

售價:HK$ 76.7

 

建議一齊購買:

+

HK$ 90.9
《国家自然科学基金项目申请攻略》
+

HK$ 107.3
《可靠性试验》
+

HK$ 107.7
《图解数控铣/加工中心加工工艺与编程从新手到高手》
+

HK$ 78.2
《人脑机智能雷达技术及其应用》
+

HK$ 113.9
《西门子S7-1200/1500 PLC SCL语言编程从入门》
+

HK$ 110.8
《中国工业设计断想》
編輯推薦:
《再生水纳米线电穿孔消毒技术研究(英文版)》研究工作解决了现有消毒技术效率低、微生物易复活、消毒副产物多等难题,具有重要的理论意义和应用价值。
內容簡介:
《再生水纳米线电穿孔消毒技术研究(英文版)》基于多孔电极内部过滤处理模式开发了纳米线电穿孔消毒技术,可利用纳米线尖端强电场实现在极低电压下对再生水中微生物的高效灭活。内容包括:1. 开发内部过滤纳米线电穿孔消毒技术,实现低电压安全消毒;2. 揭示纳米线电穿孔消毒技术可抑制灭活细菌复活的重要规律;3. 发现采用高频交流供电(10E6 Hz)模式可有效延长电极使用寿命。研究工作解决了现有消毒技术效率低、微生物易复活、消毒副产物多等难题,具有重要的理论意义和应用价值。 《再生水纳米线电穿孔消毒技术研究(英文版)》可供高等院校环境工程、市政工程、电化学等专业的研究人员使用,也可供相关领域的工程技术人员参考。
關於作者:
霍正洋,清华大学环境学院工学博士。现受Korea research fellowship资助于韩国成均馆大学先进材料科学与工程学院任研究教授。清华大学优秀博士毕业生。于高水平SCI期刊发表论文20余篇。研究领域:纳米材料在环境中应用,基于纳米发电机新型环境净化技术,高效消毒技术,再生水生物风险评价与控制。
目錄
Chapter 1Introduction
1.1Research background
1.1.1Significance of wastewater reclamation
and reuse
1.1.2Necessity of wastewater reclamation
and reuse
1.1.3Challenges of the existing disinfection
technology
1.2Electroporation disinfection
1.2.1Electroporation for biomedical application
1.2.2Electroporation for water disinfection
1.3Current research status of novel electroporation
disinfection
1.3.1Nanowireassisted electroporation for water
disinfection
1.3.2Current reactor for nanowireassisted
electroporation disinfection

1.3.3Methods for insitu nanowire fabrication
1.3.4Impact of the nanowire morphology on
electroporation disinfection
1.3.5Nanomaterial strengthening method and electrode
lifetime improvement method
1.3.6Treatment efficiency of nanomaterialenabled
disinfection technology for reclaimed
wastewater
1.4Research topics to be further investigated
1.5Research objective and content
1.5.1Research objective
1.5.2Research content
1.5.3Research roadmap

Chapter 2Development of nanowiremodified electrodes and investigation
of the microbial inactivation performance
2.1Research background
2.2Experimental materials and methods
2.2.1Experimental reagents
2.2.2CuO nanowiremodified copper foam electrodes
fabrication and disinfection device
construction
2.2.3Characterization of CuO nanowiremodified
copper foam electrodes
2.2.4Microbes and water samples used in
experiments
2.2.5Nanowireassisted electroporation for microbial
disinfection
2.2.6Bacterial storage after nanowireassisted
electroporation disinfection
2.2.7Free chlorine detection and current detection
during nanowireassisted electroporation
disinfection
2.2.8Copper ion concentration detection
2.2.9Bacterial morphology analysis
2.2.10Bacterial staining experiments
2.3Fabrication of CuO nanowiremodified copper
foam electrodes
2.4Disinfection efficiency of CuO nanowiremodified copper
foam electrodes
2.4.1Disinfection efficiency of E.coli.
2.4.2Disinfection efficiency of E. faecalis, B.subtilis,
and secondary effluent from municipal wastewater
treatment plants
2.4.3Current fluctuations and free chlorine generation
during the disinfection process
2.5Bacterial inactivation mechanisms of nanowireassisted
electroporation disinfection
2.5.1Cell morphology analysis
2.5.2Bacterial staining analysis
2.6Bacterial population fluctuations during the storage
process after disinfection
2.6.1Bacterial population fluctuations during the
storage process
2.6.2Structural analysis of bacterial morphology
during storage after lowdosage nanowireassisted
electroporation disinfection
2.6.3Summary of the tendency of bacterial changes
during storage after disinfection
2.7Summary of this chapter

Chapter 3Effect of the nanowire morphology and electrode structure
on microbial inactivation
3.1Research background
3.2Experimental materials and methods
3.2.1Experimental reagents
3.2.2Preparation of porous electrodes modified with
nanowires of different morphologies
3.2.3Construction of nanowireassisted electroporation
disinfection devices with different electrode
structures
3.2.4Characterization of CuO nanowiremodified
copper foam electrode
3.2.5Microbes and water samples used in
experiments
3.2.6Nanowireassisted electroporation for microbial
disinfection
3.2.7Investigation of the disinfection contribution
of positive and negative electrode and
optimization of the reactor design
3.3Investigation on the effect of CuO nanowire morphology
on bacterial disinfection
3.3.1Factors impacting the morphology of
CuO
nanowires
3.3.2Study on the impact of CuO nanowire
morphology on bacterial disinfection
3.4Investigation on the effect of electrode structure on
bacterial disinfection
3.4.1Investigation of the effect of electrode pore
size on bacterial disinfection
3.4.2Investigation of the effect of electrode thickness
on bacterial disinfection
3.5Investigation on the effect of electrode arrangement
on bacterial disinfection
3.5.1Contribution of positive and negative electrodes
to microbial inactivation during nanowireassisted
electroporation disinfection
3.5.2Reactor optimization to enhance electroporation
disinfection efficiency
3.6Summary of this chapter

Chapter 4Fabrication of highdurability nanowiremodified electrodes
and investigation of their microbial
disinfection performance
4.1Research background
4.2Experimental materials and methods
4.2.1Experimental reagents
4.2.2Fabrication of Cu3P nanowiremodified copper
foam electrode
4.2.3Construction of nanowireassisted electroporation
disinfection devices
4.2.4Characterization and elemental analysis
of
nanowiremodified electrode
4.2.5Microbes and water samples used in
experiments
4.2.6Cu3P nanowireassisted electroporation for
microbial disinfection
4.2.7Analysis of microbial inactivation
mechanisms
4.2.8Analysis of the disinfection efficiency using
nanowiremodified electrodes for
longterm operation
4.2.9Analysis of the loss mechanism of electrode
during longterm operation
4.3Fabrication and characterization of Cu3P
nanowiremodified electrodes
4.3.1Fabrication of Cu3P nanowiremodified
electrodes
4.3.2Characterization of Cu3P nanowiremodified
electrodes
4.4Disinfection efficiency and mechanism of nanowire
assisted electroporation using Cu3P nanowiremodified
electrodes
4.4.1Disinfection efficiency of nanowireassisted
electroporation using Cu3P nanowiremodified
electrodes
4.4.2Disinfection mechanisms of nanowireassisted
electroporation using Cu3P nanowiremodified
electrodes
4.5Longterm disinfection performance and electrode
loss mechanism

4.5.1Longterm disinfection performance of Cu3P
nanowiremodified electrodes

4.5.2Electrode loss phenomenon during the
longterm operation
4.5.3Loss mechanism of Cu3P nanowiremodified
electrode
4.6Summary of this chapter

Chapter 5Surface coating on nanowiremodified electrode
lifetime enhancement
5.1Research background
5.2Experimental materials and methods
5.2.1Experimental reagents
5.2.2Fabrication of polydopamine (PDA)coated
nanowiremodified electrodes
5.2.3Characterization of PDAcoated nanowire
modified electrodes
5.2.4Disinfection device construction using PDA
coated nanowiremodified electrodes
5.2.5Microbes and water samples used
in experiments
5.2.6Electroporation disinfection for microbes using
PDAcoated nanowiremodified electrodes
5.2.7Analysis of the disinfection efficiency
using nanowiremodified electrodes for long
term operation
5.2.8Analysis of the loss mechanism of electrode
during longterm operation
5.3Fabrication of PDAcoated nanowiremodified
electrodes
5.3.1Fabrication of PDAcoated CuO
nanowiremodified electrodes
5.3.2Characterization of PDAcoated CuO
nanowiremodified electrodes
5.3.3Fabrication of PDAcoated Cu3P
nanowiremodified electrodes
5.3.4Characterization of PDAcoated Cu3P
nanowiremodified electrodes
5.4Electroporation disinfection efficiency of PDAcoated
nanowiremodified electrodes
5.4.1Disinfection efficiency of PDAcoated
nanowiremodified electrodes
5.4.2Analysis of the disinfection mechanism of
PDAcoated nanowiremodified electrodes
5.5Longterm disinfection performance and loss mechanism
of PDAcoated nanowiremodified electrodes
5.5.1Longterm disinfection performance of PDA
coated nanowiremodified electrodes

5.5.2PDAcoated nanowiremodified electrode loss
analysis
5.5.3Analysis of the loss mechanism of PDAcoated
nanowiremodified electrodes
5.6Summary of this chapter

Chapter 6Altering current driven nanowireassisted electroporation
disinfection with the enhanced electrode life
6.1Research background
6.2Experimental materials and methods
6.2.1Experimental reagents
6.2.2Fabrication of PDAcoated nanowiremodified
electrodes
6.2.3Disinfection device construction using
PDAcoated nanowiremodified
electrodes
6.2.4Microbes and water samples used in
experiments
6.2.5Electroporation disinfection for microbes
using PDAcoated nanowiremodified
electrodes
6.2.6Analysis of the disinfection efficiency using
nanowiremodified electrodes for longterm
operation
6.2.7Analysis of the loss mechanism of electrode
during longterm operation
6.3Analysis of the disinfection efficiency of nanowire
assisted electroporation driven by a highfrequency AC
power supply

6.4Longterm disinfection efficiency and loss mechanism of
nanowireassisted electroporation powered by
highfrequency AC
6.4.1Highfrequency ACpowered nanowireassisted
electroporation for longterm disinfection
6.4.2Analysis of electrode loss in longterm operation
when powered by highfrequency AC
6.5Summary of this chapter

Chapter 7Nanowireassisted electroporation disinfection
for reclaimed water
7.1Research background
7.2Experimental materials and methods
7.2.1Experimental reagents
7.2.2Fabrication of nanowiremodified electrodes
7.2.3Disinfection device construction using
nanowiremodified electrodes
7.2.4Microbes and water samples used in
experiments
7.2.5Electroporation disinfection for
reclaimed water
7.3Effect of typical reclaimed water quality on
nanowireassisted electroporation disinfection
efficiency
7.3.1Effect of inorganic water parameters on the
efficiency of DCpowered nanowireassisted
electroporation disinfection
7.3.2Effect of inorganic water parameters
on the efficiency of ACpowered nanowire
assisted electroporation disinfection
7.3.3Effect of organic matter on the disinfection
efficiency of DCpowered nanowireassisted
electroporation
7.3.4Effect of organic matter on the disinfection
efficiency of ACpowered nanowireassisted
electroporation
7.4Disinfection performance of nanowireassisted
electroporation on reclaimed water
7.4.1Disinfection performance of nanowireassisted
electroporation for secondary effluent from
wastewater reclamation treatment plants
7.4.2Disinfection performance of nanowireassisted
electroporation for the receiving water bodies of
reclaimed water
7.5Summary of this chapter

Chapter 8Conclusions and perspectives
8.1Conclusions
8.2Perspectives

References
內容試閱
过冷水滴的碰撞结冰现象广泛存在于电力通信、气象、航空航海及低温制冷等生产生活领域。大多数的结冰会带来不利影响甚至导致危害。例如,电线、铁塔、风机叶片等的结冰会影响电力设备的正常运行,飞机结冰则会威胁飞行安全。冰雹/冻雨等气象灾害、食品/生物等低温冷藏也都与过冷水结冰密切相关。
近年来,随着航空/天/海、特高压输电、5G通讯等国家重大战略的制定,气象预测、低温存储、高效节能等经济与环保的发展,过冷水滴碰撞结冰的机理研究变得更为迫切。一方面,过冷水处于亚稳态,其相变结冰过程有别于常规的稳态结冰; 另一方面,宏观结冰现象实际上是始于单个微观过冷水滴碰撞结冰并逐渐积累的过程。为了准确预测和有效控制过冷水滴碰撞结冰过程,以降低乃至消除结冰导致的危害,需要结合流体力学、传热传质学、热力学等多学科,深入认识和掌握过冷水滴的碰撞结冰机理。
本研究采用实验测量、数值模拟和理论分析相结合的方法,系统研究过冷水滴的结冰与碰撞机理及其耦合特性。物理过程上,先解耦研究过冷水滴的相变结冰和常温水滴的流体碰撞过程,进而分析过冷水滴碰撞结冰的耦合特性; 物理尺度上,从单个微观过冷水滴碰撞结冰出发,并以此为基础拓展到宏观积冰过程。主要创新性工作包括: 揭示了过冷水滴成核的体积效应和时间效应,建立了考虑过冷效应及成核再辉的过冷水滴冻结模型,提出了过冷水滴冻结时间的计算关联式; 引入动态接触角模型,并考虑椭球水滴的初始形状,改进了水滴碰撞最大铺展系数计算关系式; 获得了不同润湿性表面上水滴碰撞结冰的统一最终形态分布图; 构建了单个微观过冷水滴的碰撞结冰现象与宏观积冰过程之间的联系,建立了变物性宏观积冰模型,并给出了不同来流参数下积冰模型选择的建议。综上,本研究分析了过冷水滴结冰与碰撞的耦合机理,阐明了过冷水滴碰撞结冰过程中的传热与流动机制,改进和完善了微/宏观结冰模型,提高了结冰预测准确度,对结/防/除冰相关应用的设计和优化有重要的指导意义。
本书作者张旋博士,2019年7月博士毕业于清华大学能源与动力工程系,同年获评北京市优秀毕业生,其学位论文被评为清华大学优秀博士论文,现被邀将该论文内容凝练成专著,作为导师甚感欣慰。希望本书的出版能够促进和加深读者对于过冷水滴结冰与碰撞的理解,并为相关研究人员提供一些参考。
吴晓敏
2020年8月于清华园

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.