1Introduction
1.1Research Background and Significance
1.1.1High Voltage Direct Current Transmission
1.1.2Gas Insulated Transmission Line
1.1.3Insulation Problems of GIL
1.2Research Status of GasSolid Interface Charge
Accumulation
1.2.1Early Research Basis
1.2.2Recent Research Trends
1.2.3Brief Summary of Research Status
1.2.4Existing Problems
1.3Main Contents of This Book
2Design of Surface Charge Measurement System for Downsized
GIL Model
2.1Measurement Principle of the Electrostatic Probe
2.1.1Measurement Principle of Passive Electrostatic
Probe
2.1.2Measurement Principle of Active Electrostatic
Probe
2.1.3Effect of Active Electrostatic Probe on Electric
Field
2.2Surface Charge Measuerment Platform Based on A
Downsized GIL
2.2.1Manufacture of Insulators and Design of Electrode
System
2.2.2Experimental Setup and Measurement Platform
2.3Surface Charge Measurement Platform for 2D Surface
2.4Production of DustFigure
2.5Summary
3Inversion Algorithm of Surface Charge Calculation Based on the
Digital Image Processing Technique
3.1Propose of the Inversion Algorithm for Surface Charge
Calculation
3.2Inversion Algorithm for ShiftVariant System
3.2.1ShiftVariant System and Transfer Function Matrix
Components
3.2.2The IllPosed Feature of Transfer Function
Matrix
3.2.3Wiener Filter Based on Tikhonov’s Regularization
3.2.4Spatial Resolution of the Algorithm Based on
the PSF
3.2.5Numerical Simulations and Accuracy Analysis
3.3Inversion Algorithm for ShiftInvariant System
3.3.1The Principle of Algorithm for ShiftInvariant
System
3.3.22D Fourier Transform and Wiener Filter
3.3.3Spatial Resolution Analysis
3.3.4Numerical Simulations and Accuracy Analysis
3.4Expreiment Results and the Verify of Algorithm
3.5Summary
4Surface Charge Accumulation Characteristics and Its Kinetic Model
4.1Experimental Phenomenon of Surface Charge
Accumulation
4.1.1Surface Charge Accumulation in the Air
4.1.2Surface Charge Accumulation in the SF6
4.2Two Patterns of GasSolid Interface Charge
Accumulation
4.2.1Dominant Uniform Charging
4.2.2Charge Speckles
4.3Simulation Model of GasSolid Interface Charge
Accumulation
4.3.1Model Building
4.3.2Comparison of Experimental Results and Simulation
Results
4.3.3Influence of Volume Conductivity on Charge
Accumulation
4.3.4Influence of Surface Conductivity on Charge
Accumulation
4.4Experimental Validation of Surface Charge Accumulation
Theory
4.4.1Influence of Volumn Conductivity
4.4.2Surface Charge Accumulation Under Temperature
Gradient
4.4.3Surface Charge Accumulation In Ionizing Gas
4.5Summary
5Surface Charge Dissipation Characteristics and Its Kinetic Model
5.1Experimental Design
5.1.1Test Samples
5.1.2Charging Circuit
5.1.3Research Contents
5.2Observation of Surface Charge Dissipation of Epoxy Resin
5.2.1Surface Charge Dissipation In Free Gas Volume
5.2.2Surface Charge Dissipation in Limited Gas Volume
5.2.3Surface Charge Dissipation in Ionizing Air
5.3Modeling of the Kinetic Process of Surface Charge
Dissipation
5.4Comparision of Numerical Calculations and Experimental
Results
5.4.1Surface Charge Decay Dominated by Volumn
Conducivity
5.4.2Surface Charge Decay Dominated by Gas
Neutralization
5.4.3Surface Charge Decay Dominated by Surface
Conducivity
5.5The Intrinsic Charge Dissipation and Surface Trap Energy of
Insulator
5.5.1Isothermal Current Decay theory
5.5.2Trap Denisity and Surface Potential Decay
5.5.3Surface Potential Decay Measurement and Surface
Trap Energy Caculation
5.6Summary
6Material Modification to Suppress Surfce Charge Accumulation
6.1Bulk Modification of Epoxy Resin Material
6.1.1Al2O3Filled EpoxyResin
6.1.2FullereneFilled EpoxyResin
6.2Surface Modification of Epoxy Resin Material
6.2.1Fluorination of Insulator Surface
6.2.22D NanoLaminar Coating
6.3Summary