登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書

『簡體書』微纳结构超疏水表面冷凝/融化液滴行为及其机理(英文版)

書城自編碼: 3917764
分類:簡體書→大陸圖書→工業技術一般工业技术
作者: 褚福强
國際書號(ISBN): 9787302645948
出版社: 清华大学出版社
出版日期: 2023-09-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:HK$ 140.4

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
没有一种人生是完美的:百岁老人季羡林的人生智慧(读完季羡林,我再也不内耗了)
《 没有一种人生是完美的:百岁老人季羡林的人生智慧(读完季羡林,我再也不内耗了) 》

售價:HK$ 56.9
日耳曼通识译丛:复原力:心理抗逆力
《 日耳曼通识译丛:复原力:心理抗逆力 》

售價:HK$ 34.3
海外中国研究·未竟之业:近代中国的言行表率
《 海外中国研究·未竟之业:近代中国的言行表率 》

售價:HK$ 135.7
算法经济 : 商业逻辑与人类生活的智能演进(生动呈现AI与算法的创新应用与商业价值)
《 算法经济 : 商业逻辑与人类生活的智能演进(生动呈现AI与算法的创新应用与商业价值) 》

售價:HK$ 79.4
偏爱月亮
《 偏爱月亮 》

售價:HK$ 45.8
津轻:日本无赖派文学代表太宰治自传性随笔集
《 津轻:日本无赖派文学代表太宰治自传性随笔集 》

售價:HK$ 66.7
河流之齿
《 河流之齿 》

售價:HK$ 59.8
新经济史革命:计量学派与新制度学派
《 新经济史革命:计量学派与新制度学派 》

售價:HK$ 89.7

 

建議一齊購買:

+

HK$ 115.6
《渗流-应力-损伤耦合作用下层状岩体损伤破裂过程及隧道开挖损伤》
+

HK$ 95.7
《示波器使用与维修从入门到精通》
+

HK$ 142.8
《智能供应链:预测算法理论与实战》
+

HK$ 54.5
《建筑环境学实验》
+

HK$ 73.8
《FPGA设计与开发零基础入门到精通》
+

HK$ 97.5
《房树人绘画投射测验——临床应用实践手册》
編輯推薦:
本书入选清华大学优秀博士学位论文丛书,与Spring合作出版英文版。
內容簡介:
冷凝结霜是能源动力、航空航海、制冷低温等领域的共性基础难题,加深对固体表面复杂冷凝和结霜/融霜现象的科学认知,具有长远的科学和工程意义。本书介绍了超疏水表面特殊的冷凝液滴行为特征,报道了冷凝液滴的自推进扫掠行为,阐明了液滴扫掠和液滴弹跳对液滴群生长的影响规律。通过对超疏水表面融化液滴的自发运动进行细致探索,明确了超疏水表面融霜液膜的演化规律,定义了表征固体表面接触角滞后相对于静态接触角重要程度的无量纲数,为相关工程应用提供了指导。 本书可供动力工程及工程热物理、化学工程与技术、力学等专业的高年级本科生、研究生,以及工程技术和科研人员参考。
關於作者:
褚福强,2018年7月于清华大学动力工程及工程热物理专业获得博士学位,研究领域包括冷凝、结冰、超疏水表面等。在国际权威SCI收录期刊发表论文20余篇,入选国家博士后创新人才支持计划。
目錄
1 Introduction 1
1.1 Research Background and Proposal of Topics 1
1.1.1 Condensation 1
1.1.2 Frosting and Icing 2
1.1.3 Proposal of Topics 3
1.2 Research Status 4
1.2.1 Fabrication of Superhydrophobic Surfaces 5
1.2.2 Condensation and Droplet Behaviors on
Superhydrophobic Surfaces 8
1.2.3 Frost/Ice Melting and Droplet Behaviors
on Superhydrophobic Surfaces 15
1.2.4 Summary of Research Status 17
1.3 Research Contents of Present Work 18
References 19
2 Experimental System and Superhydrophobic Surfaces 27
2.1 Experimental System and Data Processing 27
2.1.1 Overview of Experimental System 27
2.1.2 Data Processing Methods 30
2.2 Fabrication and Characterization of Superhydrophobic Surfaces . 31
2.2.1 Fabrication Methods of Superhydrophobic Surfaces 31
2.2.2 Al-Based Superhydrophobic Surfaces 32
2.2.3 Cu-Based Superhydrophobic Surfaces 36
2.3 Selection of Superhydrophobic Surfaces for Experiments 39
2.4 Summary 40
References . 41 3 Behaviors of Condensed Droplets on Superhydrophobic Surfaces . 43 3.1 Experimental Surfaces and Conditions . 43 3.2 Condensed Droplet Behaviors on Superhydrophobic Surfaces 44 3.2.1 Immobile Droplet Coalescence . 44
XVI Contents
3.2.2 Self-propelled Droplet Jumping 45
3.2.3 Self-propelled Droplet Sweeping 46
3.3 Statistics of Condensed Droplet Behaviors on Superhydrophobic
Surfaces 49
3.4 Critical Conditions for Self-propelled Droplet Behaviors 51
3.4.1 Theoretical Model 52
3.4.2 Minimum Critical Droplet Radius 54
3.4.3 Critical Ratio of Droplet Radius 56
3.4.4 Critical Static Contact Angle 57
3.5 Effect of Self-propelled Droplet Behaviors on Droplet Growth . 58
3.5.1 Droplet Diameter Distribution 58
3.5.2 Average Droplet Diameter 61
3.5.3 Surface Coverage Fractions 62
3.5.4 Effects of Working Conditions 63
3.6 Summary 64
References 65
4 Numerical Simulations of Multi-droplet Coalescence-Induced
Jumping 67
4.1 Simulation Objects and Conditions 68
4.2 Mathematical Model 69
4.2.1 Control Equation 69
4.2.2 Computational Domain, Boundary Conditions,
and Grids 71
4.2.3 Energy Analysis 72
4.3 Model Validation—Two-Droplet Coalescence-Induced Jumping . 73
4.4 Multi-droplet Coalescence-Induced Droplet Jumping 76
4.4.1 Effect of Coalesced Droplet Number 76
4.4.2 Effect of Droplet Position Distribution 81
4.5 Summary 87
References 87
5 Dynamic Melting of Freezing Droplets on Superhydrophobic
Surfaces 89
5.1 Experimental Surfaces and Conditions 89
5.2 Freezing of Condensed Droplets on Superhydrophobic Surfaces . 91
5.3 Self-propelled Behaviors During Melting Process of Freezing
Droplets 94
5.3.1 Melting Droplet Rotating 94
5.3.2 Melting Droplet Jumping 96
5.3.3 Melting Droplet Sliding 97
5.4 Effects of Self-propelled Melting Droplet Behaviors on Surface Coverage Fraction 99
5.5 Summary of This Chapter 101
References 102
Contents XVII
6 Meltwater Evolution During Defrosting on Superhydrophobic
Surfaces 105
6.1 Experimental Surfaces and Conditions 105
6.2 Meltwater Evolution on Superhydrophobic Surfaces 107
6.3 Edge Curling Phenomenon of Meltwater Films 109
6.4 Non-breaking Phenomenon of Chained Droplets 110
6.5 Summary 113
References 114
7 Relation Between Surface Wettability and Droplet Behaviors,
and Hysteresis Number 117
7.1 Morphologies and Behaviors of Condensed Droplets and Melted
Droplets 117
7.1.1 Morphologies and Behaviors of Condensed Droplets 117
7.1.2 Morphologies and Behaviors of Melted Droplets 120
7.2 Relation Between Surface Wettability and Droplet Behaviors 122
7.3 Hysteresis Number 126
7.4 Summary 129
References 130
8 Conclusions and Outlooks 133
8.1 Main Conclusions in the Present Work 133
8.2 Innovations in the Present Work 136
8.3 Outlooks for Future Research 137
內容試閱
Supervisor’s Foreword
With the development and maturity of nanotechnology and material science, the research and application of superhydrophobic surfaces have received numerous attentions, especially in recent years. Due to the great application potential in the .elds of condensation heat transfer enhancement, ice and frost suppression, power device and chip cooling, dehumidi.cation, mist water collection, self-cleaning, seawater desalination, droplet transport, etc., the self-propelled droplet movements on superhydrophobic surfaces have become a frontier and hot issue in international scienti.c research. For example, the condensed droplet jumping phenomenon induced by coalescence on superhydrophobic surfaces further enhances the con-densation heat transfer on the shoulders of the hydrophobic surfaces (compared to the .lm condensation on hydrophilic surfaces, the heat transfer coef.cient of dro-plet condensation on hydrophobic surfaces has already been improved by one to two orders of magnitude due to the ef.cient gravity-driven droplet removal mechanism), as the droplet jumping is able to self-clean microscale droplets, exposes large area of clean surface and achieves continuous condensation. The self-propelled droplet jumping phenomenon on superhydrophobic surfaces also has huge potential in suppressing the condensation frosting. Generally, the condensa-tion frosting undergoes stages including condensation nucleation, droplet growth, droplet coalescence, ice nucleation, droplet freezing and freezing propagation. While the droplet jumping phenomenon makes it possible that the supercooled droplets depart from the surface before ice nucleation, it also increases the distance between adjacent droplets, resulting in a reduced freezing propagation velocity. In addition to the condensed droplets, the melting droplets on superhydrophobic surfaces present various self-propelled movements similarly, such as the droplet rotating, the droplet jumping and the droplet sliding. All these dynamic movements facilitate the removal of meltwater, which improves the comprehensive anti-frosting performance of the superhydrophobic surface.
Under the background of the application of superhydrophobic surfaces in the .elds of condensation enhancement, anti-frosting, hot-spot cooling in electronic chips, dehumidi.cation, water harvesting, self-cleaning, seawater desalination, etc., the present thesis focuses on the general fundamental problem: the dynamic droplet
Supervisor’s Foreword
behaviors on the superhydrophobic surface and their physical mechanisms. The key point of this problem is actually the correlation between the droplet behavior and the property of the superhydrophobic surface, mainly the micro-nanostructure and the wettability, i.e., the contact angle and its hysteresis. It is this issue which limits the further development and practical application of superhydrophobic surfaces. The present thesis devotes to solve this problem, in other words, characterizes the dynamic droplet behaviors on superhydrophobic surfaces and reveals their physical mechanisms, and clari.es the relationship between the droplet behavior and the property of the superhydrophobic surface. The present thesis involves multidisci-plinary theory, such as .uid mechanics, thermodynamics, transformation kinetics, surface and interface science, heat and mass transfer rule, nanotechnology and material science. From the point of science, the research results in the present thesis are expected to expand the scienti.c frontier and promote the formation and development of new academic growth points among interdisciplinary subjects. From the aspect of engineering application, the research results in the present thesis could promote the application of superhydrophobic surfaces in multi-industrial .elds, provide guidance for the development of new technologies such as condensation enhancement, anti-frosting, defrosting, anti-corrosion, anti-microbial and .ow drag reduction, and .nally contribute to the sustainable development of the national economy and society.
Prof. Xiaomin Wu Beijing, China September 2020

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.