Contents
Chapter 1Introduction
1.1Research background
1.2Current state of research
1.2.1Methane hydrate controlling mechanisms
1.2.2Methane hydrate production prediction models
1.2.3Numerical methods for multiple physicochemical coupling problems at the pore scale
1.3Research content and methods
Chapter 2Establishment and Verification of Lattice Boltzmann Method for Multiple Physicochemical Coupling Problems
2.1Introduction of this chapter
2.2Physical problems and governing equations involved in the methane hydrate dissociation process
2.3Multiple physicochemical numerical models based on the lattice Boltzmann method
2.3.1Multi-component multiphase pseudopotential model
2.3.2Interfacial mass transfer model and heterogeneous reaction boundary treatment
2.3.3Conjugate heat transfer model
2.3.4Solid evolution model
2.3.5Numerical implementation
2.4Verification of the numerical models
2.4.1Thermodynamic consistency and Young-Laplace test
2.4.2Multiphase Poiseuille flow
2.4.3Reactive mass transfer in a square cavity
2.4.4CO2 dissolution in a closed system
2.4.5Rayleigh-Bernard natural convection
2.5Summary of this chapter
Chapter 3Analysis of Heat and Mass Transfer Mechanisms during the Methane Hydrate Dissociation Process
3.1Introduction of this chapter
3.2Physical problems and numerical parameters
3.3Numerical results and discussion
3.3.1Controlling mechanisms of methane hydrate dissociation
3.3.2Numerical simulation of dissociation experiments
3.3.3Kinetics model considering the mass transfer limitation
3.4Summary of this chapter
Chapter 4Establishment and Verification of CST-LB Model for the Interfacial Mass Transfer
4.1Introduction of this chapter
4.2CST-LB model for the interfacial mass transfer
4.3Verification of the CST-LB model
4.3.1Concentration jump at the phase interface
4.3.2Gas dissolution in a closed system
4.3.3Reactive transport during drainage in a capillary tube
4.3.4Multiphase reactive transport in the porous media
4.4Heterogeneous reaction boundary treatment and improved wetting boundary scheme
4.4.1Heterogeneous reaction boundary for CST-LB model
4.4.2Improvement of wetting boundary treatment for Multi-component pseudopotential model
4.5Comparative study of multiphase reactive transport numerical simulations
4.5.1Comparison of wetting boundary treatments
4.5.2One-dimensional multiphase mass transfer with heterogeneous chemical reaction
4.5.3Cylinder dissolution covered with a droplet
4.5.4Reactive transport in capillary displacement process
4.5.5Multiphase dissolution process in the porous media
4.6Summary of this chapter
Chapter 5Investigation on the Methane Hydrate Dissociation Dynamics Considering Gas-Water Migration
5.1Introduction of this chapter
5.2Physical problems and numerical models
5.3Numerical results and discussion
5.3.1Methane hydrate dissociation mechanisms under Single-phase flow conditions
5.3.2Methane hydrate dissociation mechanisms under multiphase flow conditions
5.3.3Methane hydrate dissociation regime diagram considering the gas-water migration
5.3.4Permeability model and hydrate surface area model
5.4Summary of this chapter
Chapter 6Conclusions and Perspectives
6.1Conclusions
6.2Innovation points of this book
6.3Perspectives
References
Acknowledgements