登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』数据分析轻松进阶:从Excel到Python和R

書城自編碼: 4015302
分類:簡體書→大陸圖書→計算機/網絡程序設計
作者: [美]乔治·芒特[George Mount]
國際書號(ISBN): 9787115647764
出版社: 人民邮电出版社
出版日期: 2024-07-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 91.8

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
偿还:债务与财富的阴暗面
《 偿还:债务与财富的阴暗面 》

售價:HK$ 80.2
清华大学藏战国竹简校释(壹):《命训》诸篇
《 清华大学藏战国竹简校释(壹):《命训》诸篇 》

售價:HK$ 94.4
封建社会农民战争问题导论(光启文库)
《 封建社会农民战争问题导论(光启文库) 》

售價:HK$ 68.4
虚弱的反攻:开禧北伐
《 虚弱的反攻:开禧北伐 》

售價:HK$ 92.0
中华内丹学典籍丛书:古书隐楼藏书汇校(上下)
《 中华内丹学典籍丛书:古书隐楼藏书汇校(上下) 》

售價:HK$ 257.2
辞源.修订本(建国60周年纪念版)(全二册)
《 辞源.修订本(建国60周年纪念版)(全二册) 》

售價:HK$ 1477.6
泰山:一种中国信仰专论(法国汉学经典译丛)
《 泰山:一种中国信仰专论(法国汉学经典译丛) 》

售價:HK$ 81.4
金石录(一函一册)(宋刻大系)
《 金石录(一函一册)(宋刻大系) 》

售價:HK$ 469.6

 

建議一齊購買:

+

HK$ 157.1
《R语言数据分析与可视化从入门到精通》
+

HK$ 85.3
《HTML5网页游戏设计从基础到开发(第2版·微课视频版)》
+

HK$ 148.8
《Go语言精进之路:从新手到高手的编程思想、方法和技巧 2》
+

HK$ 145.0
《Java开发坑点解析:从根因分析到最佳实践》
+

HK$ 123.8
《Go程序员面试笔试宝典》
+

HK$ 79.4
《Python入门神器:从编程思维和专家视角的有趣高效入门法 》
編輯推薦:
数据分析领域看似令人生畏,但你可以借助Excel这一“神奇的跳板”,轻松跃入数据分析领域。通过这本实践指南,Excel用户将轻松学会数据分析师常用的语言,在面对复杂的数据分析任务时做到胸有成竹。读完本书后,你将能够使用Python和R进行探索性数据分析和假设检验。

本书首先利用Excel帮助你理解概率分布、相关性、线性回归等统计学知识,然后分别展示如何将这些知识迁移到Python和R中。通过使用本书介绍的工具和框架,你将能够很好地掌握继续学习高级数据分析技术的窍门。

本书的阅读路线如下。

* Excel数据分析基础:使用Excel检验变量之间的关系,并将统计学和数据分析中的重要概念可视化。
* 从Excel到R:将你在Excel中学到的数据分析知识迁移到R中。
* 从Excel到Python:将你在Excel中学到的数据分析知识迁移到Python中,并对照R进行完整的数据分析。
內容簡介:
初入数据分析世界的你是否不知从何学起?本书为你绘制了一条从Excel轻松进阶到R和Python的平坦路线。你将学习如何使用R和Python这两种常用的数据编程语言进行探索性数据分析和假设检验,并在学习过程中获得实践经验。本书分为三大部分,共计14章。在第一部分中,你将使用Excel学习统计学概念,并为数据分析奠定基础。在第二部分和第三部分中,你将了解如何把已学的Excel数据分析知识分别迁移到R和Python中。本书提供丰富的代码示例和“开箱即用”的数据集,有助于你在初涉数据分析领域时轻松向前迈进一大步。
關於作者:
乔治·芒特(George Mount)是数据分析培训与咨询公司Stringfest Analytics的创始人兼首席执行官。他曾与行业先进的训练营、学习平台和实践组织合作,帮助人们提高数据分析技能。
目錄
前言
第 一部分 Excel数据分析基础
第 1章 探索性数据分析入门 3
1.1 什么是探索性数据分析 3
1.1.1 观测值 5
1.1.2 变量 5
1.2 演示:对变量进行分类 8
1.3 小结:变量类型 10
1.4 在Excel 中探索变量 10
1.4.1 探索分类变量 10
1.4.2 探索定量变量 13
1.5 本章小结 22
1.6 练习 23
第 2章 概率论基础 25
2.1 概率与随机性 25
2.2 概率与样本空间 26
2.3 概率与实验 26
2.4 非条件概率与条件概率 26
2.5 概率分布 27
2.5.1 离散概率分布 27
2.5.2 连续概率分布 30
2.6 本章小结 37
2.7 练习 37
第3章 推断统计基础 39
3.1 推断统计框架 40
3.1.1 收集有代表性的样本 40
3.1.2 陈述假设 41
3.1.3 制订分析计划 42
3.1.4 分析数据 44
3.1.5 做出决定 46
3.2 数据由你主宰 52
3.3 本章小结 53
3.4 练习 53
第4章 相关性和回归 55
4.1 “相关并不等于因果” 55
4.2 相关性简介 56
4.3 从相关性到回归 60
4.4 Excel 中的线性回归 62
4.5 反思结果:虚假关系 67
4.6 本章小结 68
4.7 高阶编程阶段 68
4.8 练习 69
第5章 数据分析栈 71
5.1 统计学、数据分析和数据科学 71
5.1.1 统计学 71
5.1.2 数据分析 71
5.1.3 商业分析 72
5.1.4 数据科学 72
5.1.5 机器学习 72
5.1.6 独特,但不排他 73
5.2 数据分析栈的重要性 73
5.2.1 电子表格 74
5.2.2 数据库 76
5.2.3 商业智能平台 77
5.2.4 数据编程语言 77
5.3 本章小结 79
5.4 下一步 79
5.5 练习 79
第二部分 从Excel 到R
第6章 使用R 之前的准备工作 83
6.1 下载R 83
6.2 RStudio 入门 83
6.3 R 包 92
6.4 升级R、RStudio 和R 包 93
6.5 本章小结 93
6.6 练习 94
第7章 R 中的数据结构97
7.1 向量 97
7.2 索引向量和提取子集 99
7.3 从Excel 表格到R 数据框 100
7.4 在R 中导入数据 102
7.5 探索R 数据框 106
7.6 索引R 数据框和提取子集 107
7.7 将数据写入R 数据框 108
7.8 本章小结 109
7.9 练习 109
第8章 使用R 进行数据处理与可视化 111
8.1 使用dplyr 包处理数据 112
8.1.1 按列操作 112
8.1.2 按行操作 114
8.1.3 聚合和连接数据 117
8.1.4 dplyr 包和管道运算符 119
8.1.5 使用tidyr 包重塑数据 121
8.2 使用ggplot2 包可视化数据 123
8.3 本章小结 129
8.4 练习 129
第9章 使用R 进行数据分析131
9.1 探索性数据分析 132
9.2 假设检验 135
9.2.1 独立样本t 检验 136
9.2.2 线性回归 138
9.2.3 训练集/ 测试集分离和验证 139
9.3 本章小结 142
9.4 练习 142
第三部分 从Excel 到Python
第 10章 使用Python 之前的准备工作 145
10.1 下载Python145
10.2 Jupyter Notebook 入门 146
10.3 Python 中的模块154
10.4 升级Python、Anaconda 和Python 包 156
10.5 本章小结 156
10.6 练习 156
第 11章 Python 中的数据结构 157
11.1 numpy 数组 158
11.2 索引numpy 数组和提取子集 159
11.3 pandas 数据框 161
11.4 在Python 中导入数据 162
11.5 探索pandas 数据框 163
11.5.1 索引pandas 数据框和提取子集 165
11.5.2 把pandas 数据框写入文件 166
11.6 本章小结 166
11.7 练习 166
第 12章 使用Python 进行数据处理与可视化 167
12.1 按列操作 168
12.2 按行操作 170
12.3 聚合和连接数据 171
12.4 重塑数据 173
12.5 可视化数据 174
12.6 本章小结 179
12.7 练习 179
第 13章 使用Python 进行数据分析 181
13.1 探索性数据分析 182
13.2 假设检验 184
13.2.1 独立样本t 检验 185
13.2.2 线性回归 186
13.2.3 训练集/ 测试集分离和验证 187
13.3 本章小结 189
13.4 练习 189
第 14章 结论和展望 191
14.1 进一步学习的方向 191
14.2 研究设计和商业实验 191
14.3 进一步学习统计方法 192
14.4 数据科学和机器学习 192
14.5 版本控制 192
14.6 道德准则 193
14.7 勇往直前 193
14.8 告别的话 193

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.