Chapter 1 Introduction 1
1.1 Process Industry 1
1.2 Process Equipment 2
1.2.1 Basic concepts of process equipment 2
1.2.2 Basic composition and structures of process equipment 3
1.3 The Mechanical Problems in the Design or Research of Process Equipment 4
Problems 5
Chapter 2 Overview to Elastoplastic Mechanics 6
2.1 Research Objects,Research Methods and Basic Tasks of Elastoplastic Mechanics 6
2.2 Basic Assumptions of Elastoplastic Mechanics 9
2.3 Elasticity and Plasticity 10
2.3.1 Analysis of stress-strain curve obtained from the tensile test of a typical plastic material—low-carbon steel 11
2.3.2 Characteristics of elastic and plastic deformations 13
2.3.3 Several stress-strain simplified models in the analytical theory of plastic mechanics 14
2.4 Load Classification 16
Problems 16
Chapter 3 Basic Concepts and Equations of Elastic Mechanics 18
3.1 External Force,Internal Force and Stress 18
3.1.1 External force 18
3.1.2 Internal force 19
3.1.3 Stress 20
3.2 Stress State and Stress Tensor at A Point 22
3.3 The Concepts of Deformation and Strain 24
3.3.1 The concept of deformation 24
3.3.2 The concept of strain and the geometric equations 25
3.4 Equilibrium Equations and Physical Equations of Elastic Mechanics 28
3.4.1 Equilibrium equations 28
3.4.2 Physical equations 30
Problems 32
Chapter 4 Plane Problems of Elastic Mechanics 34
4.1 Two Types of Plane Problems 34
4.1.1 Plane stress problem 34
4.1.2 Plane strain problem 35
4.2 Basic Equations for Plane Problems 37
4.2.1 Equilibrium equations 37
4.2.2 Geometric equations 37
4.2.3 Physical equations 38
4.3 Boundary Conditions for Plane Problems 39
4.4 The Saint-Venants Principle 41
4.5 Methods for Solving Plane Problems 42
4.5.1 Methods for solving elastic mechanics problems 42
4.5.2 Solving elastic mechanics plane problems by stress method 43
4.6 Stress Function or Biharmonic Function 46
4.7 Polar Coordinate Form of the Basic Equations 49
4.7.1 Equilibrium equations in polar coordinates 50
4.7.2 Geometric equations in polar coordinates 51
4.7.3 Physical equations in polar coordinates 54
4.7.4 Stress functions and compatibility equations in polar coordinates 54
Problems 56
Chapter 5 Key Concepts of Plastic Mechanics Fundamentals 59
5.1 Introduction 59
5.2 Maximum Shear Stress and Octahedral Shear Stress 60
5.2.1 Maximum shear stress 60
5.2.2 Octahedral shear stress 61
5.3 Yield Criterions 63
5.3.1 The Tresca yield criterion 64
5.3.2 The Mises yield criterion 65
5.4 Loading Theorem and Unloading Theorem 66
5.4.1 Loading theorem 66
5.4.2 Unloading theorem 67
Problems 68
Chapter 6 Basic Theory of Revolutional Thin-walled Shells 69
6.1 Overview 69
6.2 Geometric Characteristics of A Revolutional Thin-walled Shell 70
6.3 Non-moment Theory of Revolutional Thin-walled Shells 72
6.3.1 Overview of non-moment theory 72
6.3.2 Basic Equations of non-moment theory 74
6.4 Membrane Stresses in A Special Revolutional Thin-walled Shell 77
6.4.1 Spherical shell 78
6.4.2 Cylindrical shell 78
6.4.3 Conical shell 79
6.4.4 Ellipsoidal shell 79
6.5 Edge Stress in A Revolutional Thin-walled Shell 82
6.5.1 The cause of edge stress 82
6.5.2 The characteristics of edge stress and its treatment in pressure vessel structure 85
Problems 86
Chapter 7 Elastoplastic Mechanics Analysis of Thick-walled Cylindrical Shell 89
7.1 Introduction 89
7.2 Elastic Analysis of A Thick-walled Cylindrical Shell 90
7.2.1 Basic equations of a thick-walled cylindrical shell 90
7.2.2 Stress and displacement solutions of a thick-walled cylindrical shell 95
7.3 Stress Analysis of Combinatorial Thick-walled Cylindrical Shells 101
7.3.1 Prestress calculation of a combinatorial cylindrical shell 102
7.3.2 Integrated stress calculation of a combinatorial cylindrical shell 104
7.4 Elastoplastic Stress Analysis of A Thick-walled Cylindrical Shell and Autofrettage Processing Technology 106
7.4.1 Elastic limit analysis 107
7.4.2 Elastoplastic stress analysis 108
7.4.3 Plastic limit analysis 112
7.4.4 Autofrettage of a thick-walled cylindrical shell 113
Problems 120
Chapter 8 Thin Plate Theory 123
8.1 Basic Concepts and Assumptions of Thin Plate 123
8.1.1 Basic concepts of thin plate 123
8.1.2 Basic assumptions of thin plate 125
8.2 Axisymmetric Problem of Circular Flat Plate 126
8.2.1 Basic equations for axisymmetric bending of a circular flat plate 127
8.2.2 Stresses in a circular flat plate 131
8.2.3 Stresses in a ring plate under an axisymmetric load 139
Problems 140
References 142
內容試閱:
双语教学是随着我国高等教育改革的不断深入而产生的,并且呈现出课程门数不断增加的发展趋势。双语教学既可以在教授科技知识的同时帮助学生稳步提升外语应用能力,还可以吸取国外一些好的教学方法,因此,近年来得到了较快的发展。
对于过程装备与控制工程专业的本科教学,由于国外高等工科院校没有对应的专业,因而相应的原版英文教材很少,给双语教学带来了较大的困难,所以我们编写了本书。本书为云南省普通高等学校“十二五”规划教材,同时也是昆明理工大学省级一流本科专业过程装备与控制工程专业建设的成果之一。本书着重介绍过程装备研究或设计中所涉及力学方面的基本理论和基本知识,目的是使学生在提高英语应用能力的同时为随后的专业课程学习奠定基础,在过程装备与控制工程专业人才培养过程中起着较为重要的作用。本书在编写过程中注重理论与方法的有机结合,并注意吸取国外教材一些好的编写方法,力求通俗易懂、简明实用。
本书由朱孝钦主持编写。陈涛编写第1章、第2章和第3章;朱孝钦编写第4章、第7章和第8章;王修武编写第5章;孙雪剑编写第6章。全书由朱孝钦统稿。本书得到美国休斯敦大学Fan Wang 教授的审阅和指导。
本书得到云南省教育厅的资助,也感谢昆明理工大学教务处、化学工程学院的大力支持。
我们希望本书能对过程装备与控制工程专业的双语教学起到一定的推动作用,也希望关注、使用本书的教师和同学提出宝贵的意见。
由于编者水平有限,书中难免有些疏漏,敬请读者批评指正。
编者
2023年8月